RDS MySQL Aurora 3.07.0 is unusable for upgrades

Yesterday I detailed an incompatible breakage with RDS MySQL Aurora 3.06.0, and one option stated is to upgrade to the just released 3.07.0.

Turns out that does not work. It is not possible to upgrade any version of AWS RDS MySQL Aurora 3.x to 3.07.0, making this release effectively useless.

3.06.0 to 3.07.0 fails

$ aws rds modify-db-cluster --db-cluster-identifier $CLUSTER_ID --engine-version 8.0.mysql_aurora.3.07.0 --apply-immediately

An error occurred (InvalidParameterCombination) when calling the ModifyDBCluster operation: Cannot upgrade aurora-mysql from 8.0.mysql_aurora.3.06.0 to 8.0.mysql_aurora.3.07.0

3.06.0 to 3.06.1 succeeds

Sometimes you need to be on the current point release of a prior version.

3.06.0 to 3.07.0 fails

$ aws rds modify-db-cluster --db-cluster-identifier $CLUSTER_ID --engine-version 8.0.mysql_aurora.3.07.0 --apply-immediately

An error occurred (InvalidParameterCombination) when calling the ModifyDBCluster operation: Cannot upgrade aurora-mysql from 8.0.mysql_aurora.3.06.1 to 8.0.mysql_aurora.3.07.0

There is no upgrade path

You can look at all valid ValidUpgradeTarget for all versions. There is in-fact no version that can upgrade to AWS RDS Aurora MySQL 3.07.0.
Seems like a common test pattern overlooked.

$ aws rds describe-db-engine-versions --engine aurora-mysql

...

{
            "Engine": "aurora-mysql",
            "Status": "available",
            "DBParameterGroupFamily": "aurora-mysql8.0",
            "SupportsLogExportsToCloudwatchLogs": true,
            "SupportsReadReplica": false,
            "DBEngineDescription": "Aurora MySQL",
            "SupportedFeatureNames": [],
            "SupportedEngineModes": [
                "provisioned"
            ],
            "SupportsGlobalDatabases": true,
            "SupportsParallelQuery": true,
            "EngineVersion": "8.0.mysql_aurora.3.04.1",
            "DBEngineVersionDescription": "Aurora MySQL 3.04.1 (compatible with MySQL 8.0.28)",
            "ExportableLogTypes": [
                "audit",
                "error",
                "general",
                "slowquery"
            ],
            "ValidUpgradeTarget": [
                {
                    "Engine": "aurora-mysql",
                    "IsMajorVersionUpgrade": false,
                    "AutoUpgrade": false,
                    "Description": "Aurora MySQL 3.04.2 (compatible with MySQL 8.0.28)",
                    "EngineVersion": "8.0.mysql_aurora.3.04.2"
                },
                {
                    "Engine": "aurora-mysql",
                    "IsMajorVersionUpgrade": false,
                    "AutoUpgrade": false,
                    "Description": "Aurora MySQL 3.05.2 (compatible with MySQL 8.0.32)",
                    "EngineVersion": "8.0.mysql_aurora.3.05.2"
                },
                {
                    "Engine": "aurora-mysql",
                    "IsMajorVersionUpgrade": false,
                    "AutoUpgrade": false,
                    "Description": "Aurora MySQL 3.06.0 (compatible with MySQL 8.0.34)",
                    "EngineVersion": "8.0.mysql_aurora.3.06.0"
                },
                {
                    "Engine": "aurora-mysql",
                    "IsMajorVersionUpgrade": false,
                    "AutoUpgrade": false,
                    "Description": "Aurora MySQL 3.06.1 (compatible with MySQL 8.0.34)",
                    "EngineVersion": "8.0.mysql_aurora.3.06.1"
                }
            ]
        },

Database testing for all version changes (including minor versions)

We know that SQL statement compatibility can change with major database version upgrades and that you should adequately test for them. But what about minor version upgrades?

It is dangerous to assume that your existing SQL statements work with a minor update, especially when using an augmented version of an open-source database such as a cloud provider that may not be as transparent about all changes.

While I have always found reading the release notes an important step in architectural principles over the decades, many organizations skip over this principle and get caught off guard when there are no dedicated DBAs and architects in the engineering workforce.

Real-world examples of minor version upgrade issues

Here are two real-world situations common in the AWS RDS ecosystem using MySQL.

  1. You are an organization that uses RDS Aurora MySQL for its production systems, and you upgrade one minor version at a time. A diligent approach is to be one minor version behind unless a known bug is fixed in a newer version you depend on.
  2. You are an organization that, to save costs with a comprehensive engineering team, uses AWS RDS MySQL (not Aurora) for developers and some testing environments.

I’ve simplified a real-world example to a simple SQL statement and combined these two separate use cases into one simulated situation for demonstration purposes.

mysql> SELECT content_type FROM reserved2;
Empty set (0.00 sec)

mysql> SELECT VERSION(), @@aurora_version;
+-----------+------------------+
| VERSION() | @@aurora_version |
+-----------+------------------+
| 8.0.28    | 3.04.2           |
+-----------+------------------+

mysql> SELECT VERSION();
+-----------+
| VERSION() |
+-----------+
| 8.0.34    |
+-----------+
1 row in set (0.00 sec)

This is a simple enough query, this runs in AWS RDS Aurora MySQL 3.04.02 (which is the present Aurora MySQL long-term support (LTS) release). This is based on MySQL 8.0.28 which is FWIW not a supported AWS RDS MySQL version anymore, the minimum is now 8.0.32 (Supported MySQL minor versions on Amazon RDS).

It runs in AWS RDS MySQL 8.0.34 which is for example what version your developer setup is.

An AWS RDS MySQL Aurora minor version upgrade

You decide to upgrade from Aurora 3.04.x/3.05.x to 3.06.x. This Aurora version is actually based on MySQL 8.0.34 (the version you just tested in RDS). Without adequate due diligence you roll out to production only to find after the fact that this SQL statement (realize this is one simplified example for demonstrate purposes) now breaks for no apparent reason.

mysql> select content_type from reserved2;
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'content_type from reserved2' at line 1

mysql> SELECT VERSION(), @@aurora_version;
+-----------+------------------+
| VERSION() | @@aurora_version |
+-----------+------------------+
| 8.0.34    | 3.06.0           |
+-----------+------------------+

Now, you need to investigate the problem, which can take hours, even days of resource time, and a lot of shaking heads to realize it has nothing to do with your application code but to do with the minor version upgrade. Which you simply cannot roll back. See Risks from auto upgrades with managed database services for some interesting facts.

Wait, what just happened?

If you performed this upgrade to the latest AWS RDS Aurora MySQL 3.06.0 version sometime after the release on 3/7/24 and before 6/4/24, a 3-month period, you are left with one choice. You have to make application code changes to address the breakage.

How many man-hours/man-days does this take? If you upgraded to this version in the past two weeks, technically you have a second choice. You can go to the most current version, 3.07.0, but you have already spent time in testing and deploying 3.06.0, which you need to re-test, then rollout in non-production accounts and then rollout to production. How many man-days of work is this?

It may be hard to justify the cost of automated testing until you uncover a situation like this one; however, it can easily be avoided in the future.

So why did this happen?

Lets look deeper are the fine-print

RDS Aurora MySQL 3.06.0

Aurora MySQL version 3.06.0 supports Amazon Bedrock integration and introduces the new reserved keywords accept, aws_bedrock_invoke_model, aws_sagemaker_invoke_endpoint, content_type, and timeout_ms. Check the object definitions for the usage of the new reserved keywords before upgrading to version 3.06.0. To mitigate the conflict with the new reserved keywords, quote the reserved keywords used in the object definitions. For more information on the Amazon Bedrock integration and handling the reserved keywords, see What is Amazon Bedrock? in the Amazon Aurora User Guide. For additional information, see Keywords and Reserved Words, The INFORMATION_SCHEMA KEYWORDS Table, and Schema Object Names in the MySQL documentation.

From AWS RDS Aurora MySQL 3.06.0 release notes (3/7/24).

While less likely you would name a column aws_bedrock_invoke_model, column names of content_type and timeout_ms are common words.

RDS Aurora MySQL 3.07.0

Aurora MySQL version 3.06.0 added support for Amazon Bedrock integration. As part of this, new reserved keywords (accept, aws_bedrock_invoke_model, aws_sagemaker_invoke_endpoint, content_type, and timeout_ms) were added. In Aurora MySQL version 3.07.0, these keywords have been changed to nonreserved keywords, which are permitted as identifiers without quoting. For more information on how MySQL handles reserved and nonreserved keywords, see Keywords and reserved words in the MySQL documentation.

From AWS RDS Aurora MySQL 3.07.0 release notes (6/4/24). Clearly someone at AWS saw the breaking changes and it was reverted. While it’s possible many customers may not need to catch this situation, this is one specific use case.

Conclusion

The moral of the database story here is Be Prepared.

You should always be prepared for future breaking compatibility. You should test with a regular software upgrade cadence and leverage automation as much as possible.

Next BaseLine is a software product that automates testing for many use cases, including this simple SQL compatibility issue. By adding to your CI/CD pipeline can help identify and risk in all SQL database access, including new engineering software releases or infrastructure updates. This product can be implemented in a few hours, and cost significantly less than the large amount of time lost with this one realistic situation.

Next BaseLine - Helping to create a better and faster next version of your data-driven product

Footnote

This example was not uncovered from a customer situation. It was uncovered and used as a demonstration because I read the release notes.

Test Case


SELECT VERSION();
SELECT VERSION(), @@aurora_version; /* No way to comment out the !Aurora example */
CREATE SCHEMA IF NOT EXISTS test;
USE test;
CREATE TABLE reserved1(id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, accept CHAR(1) NOT NULL DEFAULT 'N');
CREATE TABLE reserved2(id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, content_type VARCHAR(10) NULL DEFAULT 'text/plain');
CREATE TABLE reserved3(id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, timeout_ms INT UNSIGNED NOT NULL);
SELECT accept FROM reserved1;
SELECT content_type FROM reserved2;
SELECT timeout_ms FROM reserved3;

What does the MySQL mysqlsh util.checkForServerUpgrade() execute

During a recent Aurora MySQL 8 upgrade process, a number of validation checks have failed. This is an analysis of the error message “present in INFORMATION_SCHEMA’s INNODB_SYS_TABLES table but missing from TABLES table”.

Some background

During a Major Upgrade from Aurora MySQL 5.7 to Aurora MySQL 8.0 the cluster instances were left in an incompatible-parameters state. The upgrade-prechecks.log shed some more light on the situation with

{
            "id": "schemaInconsistencyCheck",
            "title": "Schema inconsistencies resulting from file removal or corruption",
            "status": "OK",
            "description": "Error: Following tables show signs that either table datadir directory or frm file was removed/corrupted. Please check server logs, examine datadir to detect the issue and fix it before upgrade",
            "detectedProblems": [
                {
                    "level": "Error",
                    "dbObject": "flinestones.fred",
                    "description": "present in INFORMATION_SCHEMA's INNODB_SYS_TABLES table but missing from TABLES table"
                }
            ]
        }, 

For anonymity the troublesome table here is played by flinestones.fred

This error could be reproduced more quickly with the util.checkForServerUpgrade() check that saves the creation of a snapshot of your cluster, restore from the snapshot cluster, then the launch cluster instance path.

18) Schema inconsistencies resulting from file removal or corruption
  Error: Following tables show signs that either table datadir directory or frm
    file was removed/corrupted. Please check server logs, examine datadir to
    detect the issue and fix it before upgrade

  mysql.rds_heartbeat2 - present in INFORMATION_SCHEMA's INNODB_SYS_TABLES
    table but missing from TABLES table
  flinstones.fred -
    present in INFORMATION_SCHEMA's INNODB_SYS_TABLES table but missing from
    TABLES table 

As I am using the MySQL community mysqlsh tool with a managed AWS RDS MySQL cluster, I have discounted any rds specific messages.

Back to investigating the cause. Some basic spot checks within the Cluster confirmed this mismatch.

mysql > desc flinstones.fred;
ERROR 1146 (42S02): Table flinstones.fred ' doesn't exist

mysql > select * from information_schema.innodb_sys_tables where name = ' flinstones/fred';

*results*
(1 row)

A closer inspection of the Aurora MySQL error log re-iterated there was some issue.

$ aws rds download-db-log-file-portion --db-instance-identifier ${INSTANCE_ID} --log-file-name error/mysql-error-running.log --output text

... 
[Warning] InnoDB: Tablespace 'flinstones/fred' exists in the cache with id 5233285 != 4954605
...

What is this check

It is easy enough to look at the SQL behind this using open-source software, you go to the source and look at the SQL https://github.com/mysql/mysql-shell .. upgrade_check.cc. As the message is near identical to what AWS provides I am making an educated assumption the check is the same.

// clang-format off
std::unique_ptr
Sql_upgrade_check::get_schema_inconsistency_check() {
  return std::make_unique(
      "schemaInconsistencyCheck",
      "Schema inconsistencies resulting from file removal or corruption",
      std::vector{
       "select A.schema_name, A.table_name, 'present in INFORMATION_SCHEMA''s "
       "INNODB_SYS_TABLES table but missing from TABLES table' from (select "
       "distinct "
       replace_in_SQL("substring_index(NAME, '/',1)")
       " as schema_name, "
       replace_in_SQL("substring_index(substring_index(NAME, '/',-1),'#',1)")
       " as table_name from "
       "information_schema.innodb_sys_tables where NAME like '%/%') A left "
       "join information_schema.tables I on A.table_name = I.table_name and "
       "A.schema_name = I.table_schema where A.table_name not like 'FTS_0%' "
       "and (I.table_name IS NULL or I.table_schema IS NULL) and A.table_name "
       "not REGEXP '@[0-9]' and A.schema_name not REGEXP '@[0-9]';"},
      Upgrade_issue::ERROR,
      "Following tables show signs that either table datadir directory or frm "
      "file was removed/corrupted. Please check server logs, examine datadir "
      "to detect the issue and fix it before upgrade");
}

Ok, that’s a little more difficult to read than plain text, and what if I wanted to review other SQL statements this could become tedious.

Gather the SQL statements executed by util.checkForServerUpgrade()

Let’s use a more straightforward means of capturing SQL statements, the MySQL general log.

MYSQL_PASSWD=$(date | md5sum - | cut -c1-20)

docker network create -d bridge mynetwork
docker run --name mysql57 -e MYSQL_ROOT_PASSWORD="${MYSQL_PASSWD}" -d mysql:5.7
docker network connect mynetwork mysql57
docker inspect mysql57 | grep "IPAddress"
IP=$(docker inspect mysql57 | grep '"IPAddress":' | head -1 | cut -d'"' -f4)
docker exec -it mysql57 mysql -uroot -p${MYSQL_PASSWD} -e "SET GLOBAL general_log=1"
docker exec -it mysql57 mysql -uroot -p${MYSQL_PASSWD} -e "SHOW GLOBAL VARIABLES LIKE 'general_log_file'"
GENERAL_LOG_FILE=$(docker exec -it mysql57 mysql -uroot -p${MYSQL_PASSWD} -e "SHOW GLOBAL VARIABLES LIKE 'general_log_file'" | grep general_log_file | cut -d'|' -f3)


docker run --name mysql8 -e "MYSQL_ALLOW_EMPTY_PASSWORD=yes" -d mysql/mysql-server
docker exec -it mysql8 mysqlsh -h${IP} -uroot -p${MYSQL_PASSWD} --js -- util checkForServerUpgrade | tee check.txt

docker exec -it mysql57 grep Query ${GENERAL_LOG_FILE} | cut -c41- | tee check.sql


# Cleanup
docker stop mysql8 && docker rm mysql8
docker stop mysql57 && docker rm mysql57
docker network rm mynetwork

And we are left with the output of util.checkForServerUpgrade() and the SQL of all checks including of said statement:

check.sql

SET NAMES 'utf8mb4'
select current_user()
SELECT PRIVILEGE_TYPE, IS_GRANTABLE FROM INFORMATION_SCHEMA.USER_PRIVILEGES WHERE GRANTEE = '\'root\'@\'%\''
SELECT PRIVILEGE_TYPE, IS_GRANTABLE, TABLE_SCHEMA FROM INFORMATION_SCHEMA.SCHEMA_PRIVILEGES WHERE GRANTEE = '\'root\'@\'%\'' ORDER BY TABLE_SCHEMA
SELECT PRIVILEGE_TYPE, IS_GRANTABLE, TABLE_SCHEMA, TABLE_NAME FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES WHERE GRANTEE = '\'root\'@\'%\'' ORDER BY TABLE_SCHEMA, TABLE_NAME
select @@version, @@version_comment, UPPER(@@version_compile_os)
SET show_old_temporals = ON
SELECT table_schema, table_name,column_name,column_type FROM information_schema.columns WHERE column_type LIKE 'timestamp /* 5.5 binary format */'
SET show_old_temporals = OFF
select SCHEMA_NAME, 'Schema name' as WARNING from INFORMATION_SCHEMA.SCHEMATA where SCHEMA_NAME in ('ADMIN', 'CUBE', 'CUME_DIST', 'DENSE_RANK', 'EMPTY', 'EXCEPT', 'FIRST_VALUE', 'FUNCTION', 'GROUPING', 'GROUPS', 'JSON_TABLE', 'LAG', 'LAST_VALUE', 'LEAD', 'NTH_VALUE', 'NTILE', 'OF', 'OVER', 'PERCENT_RANK', 'PERSIST', 'PERSIST_ONLY', 'RANK', 'RECURSIVE', 'ROW', 'ROWS', 'ROW_NUMBER', 'SYSTEM', 'WINDOW', 'LATERAL', 'ARRAY' ,'MEMBER' )
SELECT TABLE_SCHEMA, TABLE_NAME, 'Table name' as WARNING FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_TYPE != 'VIEW' and TABLE_NAME in ('ADMIN', 'CUBE', 'CUME_DIST', 'DENSE_RANK', 'EMPTY', 'EXCEPT', 'FIRST_VALUE', 'FUNCTION', 'GROUPING', 'GROUPS', 'JSON_TABLE', 'LAG', 'LAST_VALUE', 'LEAD', 'NTH_VALUE', 'NTILE', 'OF', 'OVER', 'PERCENT_RANK', 'PERSIST', 'PERSIST_ONLY', 'RANK', 'RECURSIVE', 'ROW', 'ROWS', 'ROW_NUMBER', 'SYSTEM', 'WINDOW', 'LATERAL', 'ARRAY' ,'MEMBER' )
select TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, COLUMN_TYPE, 'Column name' as WARNING FROM information_schema.columns WHERE TABLE_SCHEMA not in ('information_schema', 'performance_schema') and COLUMN_NAME in ('ADMIN', 'CUBE', 'CUME_DIST', 'DENSE_RANK', 'EMPTY', 'EXCEPT', 'FIRST_VALUE', 'FUNCTION', 'GROUPING', 'GROUPS', 'JSON_TABLE', 'LAG', 'LAST_VALUE', 'LEAD', 'NTH_VALUE', 'NTILE', 'OF', 'OVER', 'PERCENT_RANK', 'PERSIST', 'PERSIST_ONLY', 'RANK', 'RECURSIVE', 'ROW', 'ROWS', 'ROW_NUMBER', 'SYSTEM', 'WINDOW', 'LATERAL', 'ARRAY' ,'MEMBER' )
SELECT TRIGGER_SCHEMA, TRIGGER_NAME, 'Trigger name' as WARNING FROM INFORMATION_SCHEMA.TRIGGERS WHERE TRIGGER_NAME in ('ADMIN', 'CUBE', 'CUME_DIST', 'DENSE_RANK', 'EMPTY', 'EXCEPT', 'FIRST_VALUE', 'FUNCTION', 'GROUPING', 'GROUPS', 'JSON_TABLE', 'LAG', 'LAST_VALUE', 'LEAD', 'NTH_VALUE', 'NTILE', 'OF', 'OVER', 'PERCENT_RANK', 'PERSIST', 'PERSIST_ONLY', 'RANK', 'RECURSIVE', 'ROW', 'ROWS', 'ROW_NUMBER', 'SYSTEM', 'WINDOW', 'LATERAL', 'ARRAY' ,'MEMBER' )
SELECT TABLE_SCHEMA, TABLE_NAME, 'View name' as WARNING FROM INFORMATION_SCHEMA.VIEWS WHERE TABLE_NAME in ('ADMIN', 'CUBE', 'CUME_DIST', 'DENSE_RANK', 'EMPTY', 'EXCEPT', 'FIRST_VALUE', 'FUNCTION', 'GROUPING', 'GROUPS', 'JSON_TABLE', 'LAG', 'LAST_VALUE', 'LEAD', 'NTH_VALUE', 'NTILE', 'OF', 'OVER', 'PERCENT_RANK', 'PERSIST', 'PERSIST_ONLY', 'RANK', 'RECURSIVE', 'ROW', 'ROWS', 'ROW_NUMBER', 'SYSTEM', 'WINDOW', 'LATERAL', 'ARRAY' ,'MEMBER' )
SELECT ROUTINE_SCHEMA, ROUTINE_NAME, 'Routine name' as WARNING FROM INFORMATION_SCHEMA.ROUTINES WHERE ROUTINE_NAME in ('ADMIN', 'CUBE', 'CUME_DIST', 'DENSE_RANK', 'EMPTY', 'EXCEPT', 'FIRST_VALUE', 'FUNCTION', 'GROUPING', 'GROUPS', 'JSON_TABLE', 'LAG', 'LAST_VALUE', 'LEAD', 'NTH_VALUE', 'NTILE', 'OF', 'OVER', 'PERCENT_RANK', 'PERSIST', 'PERSIST_ONLY', 'RANK', 'RECURSIVE', 'ROW', 'ROWS', 'ROW_NUMBER', 'SYSTEM', 'WINDOW', 'LATERAL', 'ARRAY' ,'MEMBER' )
SELECT EVENT_SCHEMA, EVENT_NAME, 'Event name' as WARNING FROM INFORMATION_SCHEMA.EVENTS WHERE EVENT_NAME in ('ADMIN', 'CUBE', 'CUME_DIST', 'DENSE_RANK', 'EMPTY', 'EXCEPT', 'FIRST_VALUE', 'FUNCTION', 'GROUPING', 'GROUPS', 'JSON_TABLE', 'LAG', 'LAST_VALUE', 'LEAD', 'NTH_VALUE', 'NTILE', 'OF', 'OVER', 'PERCENT_RANK', 'PERSIST', 'PERSIST_ONLY', 'RANK', 'RECURSIVE', 'ROW', 'ROWS', 'ROW_NUMBER', 'SYSTEM', 'WINDOW', 'LATERAL', 'ARRAY' ,'MEMBER' )
select SCHEMA_NAME, concat('schema''s default character set: ',  DEFAULT_CHARACTER_SET_NAME) from INFORMATION_SCHEMA.schemata where SCHEMA_NAME not in ('information_schema', 'performance_schema', 'sys') and DEFAULT_CHARACTER_SET_NAME in ('utf8', 'utf8mb3')
select TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, concat('column''s default character set: ',CHARACTER_SET_NAME) from information_schema.columns where CHARACTER_SET_NAME in ('utf8', 'utf8mb3') and TABLE_SCHEMA not in ('sys', 'performance_schema', 'information_schema', 'mysql')
SELECT TABLE_SCHEMA, TABLE_NAME, 'Table name used in mysql schema in 8.0' as WARNING FROM INFORMATION_SCHEMA.TABLES WHERE LOWER(TABLE_SCHEMA) = 'mysql' and LOWER(TABLE_NAME) IN ('catalogs', 'character_sets', 'collations', 'column_type_elements', 'columns', 'dd_properties', 'events', 'foreign_key_column_usage', 'foreign_keys', 'index_column_usage', 'index_partitions', 'index_stats', 'indexes', 'parameter_type_elements', 'parameters', 'routines', 'schemata', 'st_spatial_reference_systems', 'table_partition_values', 'table_partitions', 'table_stats', 'tables', 'tablespace_files', 'tablespaces', 'triggers', 'view_routine_usage', 'view_table_usage', 'component', 'default_roles', 'global_grants', 'innodb_ddl_log', 'innodb_dynamic_metadata', 'password_history', 'role_edges')
select table_schema, table_name, concat(engine, ' engine does not support native partitioning') from information_schema.Tables where create_options like '%partitioned%' and upper(engine) not in ('INNODB', 'NDB', 'NDBCLUSTER')
select table_schema, table_name, 'Foreign key longer than 64 characters' as description from information_schema.tables where table_name in (select left(substr(id,instr(id,'/')+1), instr(substr(id,instr(id,'/')+1),'_ibfk_')-1) from information_schema.innodb_sys_foreign where length(substr(id,instr(id,'/')+1))>64)
select routine_schema, routine_name, concat(routine_type, ' uses obsolete MAXDB sql_mode') from information_schema.routines where find_in_set('MAXDB', sql_mode)
select event_schema, event_name, 'EVENT uses obsolete MAXDB sql_mode' from information_schema.EVENTS where find_in_set('MAXDB', sql_mode)
select trigger_schema, trigger_name, 'TRIGGER uses obsolete MAXDB sql_mode' from information_schema.TRIGGERS where find_in_set('MAXDB', sql_mode)
select concat('global system variable ', variable_name), 'defined using obsolete MAXDB option' as reason from performance_schema.global_variables where variable_name = 'sql_mode' and find_in_set('MAXDB', variable_value)
select routine_schema, routine_name, concat(routine_type, ' uses obsolete DB2 sql_mode') from information_schema.routines where find_in_set('DB2', sql_mode)
select event_schema, event_name, 'EVENT uses obsolete DB2 sql_mode' from information_schema.EVENTS where find_in_set('DB2', sql_mode)
select trigger_schema, trigger_name, 'TRIGGER uses obsolete DB2 sql_mode' from information_schema.TRIGGERS where find_in_set('DB2', sql_mode)
select concat('global system variable ', variable_name), 'defined using obsolete DB2 option' as reason from performance_schema.global_variables where variable_name = 'sql_mode' and find_in_set('DB2', variable_value)
select routine_schema, routine_name, concat(routine_type, ' uses obsolete MSSQL sql_mode') from information_schema.routines where find_in_set('MSSQL', sql_mode)
select event_schema, event_name, 'EVENT uses obsolete MSSQL sql_mode' from information_schema.EVENTS where find_in_set('MSSQL', sql_mode)
select trigger_schema, trigger_name, 'TRIGGER uses obsolete MSSQL sql_mode' from information_schema.TRIGGERS where find_in_set('MSSQL', sql_mode)
select concat('global system variable ', variable_name), 'defined using obsolete MSSQL option' as reason from performance_schema.global_variables where variable_name = 'sql_mode' and find_in_set('MSSQL', variable_value)
select routine_schema, routine_name, concat(routine_type, ' uses obsolete MYSQL323 sql_mode') from information_schema.routines where find_in_set('MYSQL323', sql_mode)
select event_schema, event_name, 'EVENT uses obsolete MYSQL323 sql_mode' from information_schema.EVENTS where find_in_set('MYSQL323', sql_mode)
select trigger_schema, trigger_name, 'TRIGGER uses obsolete MYSQL323 sql_mode' from information_schema.TRIGGERS where find_in_set('MYSQL323', sql_mode)
select concat('global system variable ', variable_name), 'defined using obsolete MYSQL323 option' as reason from performance_schema.global_variables where variable_name = 'sql_mode' and find_in_set('MYSQL323', variable_value)
select routine_schema, routine_name, concat(routine_type, ' uses obsolete MYSQL40 sql_mode') from information_schema.routines where find_in_set('MYSQL40', sql_mode)
select event_schema, event_name, 'EVENT uses obsolete MYSQL40 sql_mode' from information_schema.EVENTS where find_in_set('MYSQL40', sql_mode)
select trigger_schema, trigger_name, 'TRIGGER uses obsolete MYSQL40 sql_mode' from information_schema.TRIGGERS where find_in_set('MYSQL40', sql_mode)
select concat('global system variable ', variable_name), 'defined using obsolete MYSQL40 option' as reason from performance_schema.global_variables where variable_name = 'sql_mode' and find_in_set('MYSQL40', variable_value)
select routine_schema, routine_name, concat(routine_type, ' uses obsolete NO_AUTO_CREATE_USER sql_mode') from information_schema.routines where find_in_set('NO_AUTO_CREATE_USER', sql_mode)
select event_schema, event_name, 'EVENT uses obsolete NO_AUTO_CREATE_USER sql_mode' from information_schema.EVENTS where find_in_set('NO_AUTO_CREATE_USER', sql_mode)
select trigger_schema, trigger_name, 'TRIGGER uses obsolete NO_AUTO_CREATE_USER sql_mode' from information_schema.TRIGGERS where find_in_set('NO_AUTO_CREATE_USER', sql_mode)
select concat('global system variable ', variable_name), 'defined using obsolete NO_AUTO_CREATE_USER option' as reason from performance_schema.global_variables where variable_name = 'sql_mode' and find_in_set('NO_AUTO_CREATE_USER', variable_value)
select routine_schema, routine_name, concat(routine_type, ' uses obsolete NO_FIELD_OPTIONS sql_mode') from information_schema.routines where find_in_set('NO_FIELD_OPTIONS', sql_mode)
select event_schema, event_name, 'EVENT uses obsolete NO_FIELD_OPTIONS sql_mode' from information_schema.EVENTS where find_in_set('NO_FIELD_OPTIONS', sql_mode)
select trigger_schema, trigger_name, 'TRIGGER uses obsolete NO_FIELD_OPTIONS sql_mode' from information_schema.TRIGGERS where find_in_set('NO_FIELD_OPTIONS', sql_mode)
select concat('global system variable ', variable_name), 'defined using obsolete NO_FIELD_OPTIONS option' as reason from performance_schema.global_variables where variable_name = 'sql_mode' and find_in_set('NO_FIELD_OPTIONS', variable_value)
select routine_schema, routine_name, concat(routine_type, ' uses obsolete NO_KEY_OPTIONS sql_mode') from information_schema.routines where find_in_set('NO_KEY_OPTIONS', sql_mode)
select event_schema, event_name, 'EVENT uses obsolete NO_KEY_OPTIONS sql_mode' from information_schema.EVENTS where find_in_set('NO_KEY_OPTIONS', sql_mode)
select trigger_schema, trigger_name, 'TRIGGER uses obsolete NO_KEY_OPTIONS sql_mode' from information_schema.TRIGGERS where find_in_set('NO_KEY_OPTIONS', sql_mode)
select concat('global system variable ', variable_name), 'defined using obsolete NO_KEY_OPTIONS option' as reason from performance_schema.global_variables where variable_name = 'sql_mode' and find_in_set('NO_KEY_OPTIONS', variable_value)
select routine_schema, routine_name, concat(routine_type, ' uses obsolete NO_TABLE_OPTIONS sql_mode') from information_schema.routines where find_in_set('NO_TABLE_OPTIONS', sql_mode)
select event_schema, event_name, 'EVENT uses obsolete NO_TABLE_OPTIONS sql_mode' from information_schema.EVENTS where find_in_set('NO_TABLE_OPTIONS', sql_mode)
select trigger_schema, trigger_name, 'TRIGGER uses obsolete NO_TABLE_OPTIONS sql_mode' from information_schema.TRIGGERS where find_in_set('NO_TABLE_OPTIONS', sql_mode)
select concat('global system variable ', variable_name), 'defined using obsolete NO_TABLE_OPTIONS option' as reason from performance_schema.global_variables where variable_name = 'sql_mode' and find_in_set('NO_TABLE_OPTIONS', variable_value)
select routine_schema, routine_name, concat(routine_type, ' uses obsolete ORACLE sql_mode') from information_schema.routines where find_in_set('ORACLE', sql_mode)
select event_schema, event_name, 'EVENT uses obsolete ORACLE sql_mode' from information_schema.EVENTS where find_in_set('ORACLE', sql_mode)
select trigger_schema, trigger_name, 'TRIGGER uses obsolete ORACLE sql_mode' from information_schema.TRIGGERS where find_in_set('ORACLE', sql_mode)
select concat('global system variable ', variable_name), 'defined using obsolete ORACLE option' as reason from performance_schema.global_variables where variable_name = 'sql_mode' and find_in_set('ORACLE', variable_value)
select routine_schema, routine_name, concat(routine_type, ' uses obsolete POSTGRESQL sql_mode') from information_schema.routines where find_in_set('POSTGRESQL', sql_mode)
select event_schema, event_name, 'EVENT uses obsolete POSTGRESQL sql_mode' from information_schema.EVENTS where find_in_set('POSTGRESQL', sql_mode)
select trigger_schema, trigger_name, 'TRIGGER uses obsolete POSTGRESQL sql_mode' from information_schema.TRIGGERS where find_in_set('POSTGRESQL', sql_mode)
select concat('global system variable ', variable_name), 'defined using obsolete POSTGRESQL option' as reason from performance_schema.global_variables where variable_name = 'sql_mode' and find_in_set('POSTGRESQL', variable_value)
select TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, UPPER(DATA_TYPE), COLUMN_TYPE, CHARACTER_MAXIMUM_LENGTH from information_schema.columns where data_type in ('enum','set') and CHARACTER_MAXIMUM_LENGTH > 255 and table_schema not in ('information_schema')
SELECT TABLE_SCHEMA, TABLE_NAME, concat('Partition ', PARTITION_NAME, ' is in shared tablespace ', TABLESPACE_NAME) as description FROM information_schema.PARTITIONS WHERE PARTITION_NAME IS NOT NULL AND (TABLESPACE_NAME IS NOT NULL AND TABLESPACE_NAME!='innodb_file_per_table')
SELECT tablespace_name, concat('circular reference in datafile path: \'', file_name, '\'') FROM INFORMATION_SCHEMA.FILES where file_type='TABLESPACE' and (file_name rlike '[^\\.]/\\.\\./' or file_name rlike '[^\\.]\\\\\\.\\.\\\\')
select table_schema, table_name, '', 'VIEW', UPPER(view_definition) from information_schema.views where table_schema not in ('performance_schema','information_schema','sys','mysql')
select routine_schema, routine_name, '', routine_type, UPPER(routine_definition) from information_schema.routines where routine_schema not in ('performance_schema','information_schema','sys','mysql')
select TABLE_SCHEMA,TABLE_NAME,COLUMN_NAME, 'COLUMN', UPPER(GENERATION_EXPRESSION) from information_schema.columns where extra regexp 'generated' and table_schema not in ('performance_schema','information_schema','sys','mysql')
select TRIGGER_SCHEMA, TRIGGER_NAME, '', 'TRIGGER', UPPER(ACTION_STATEMENT) from information_schema.triggers where TRIGGER_SCHEMA not in ('performance_schema','information_schema','sys','mysql')
select event_schema, event_name, '', 'EVENT', UPPER(EVENT_DEFINITION) from information_schema.events where event_schema not in ('performance_schema','information_schema','sys','mysql')
select table_schema, table_name, 'VIEW', UPPER(view_definition) from information_schema.views where table_schema not in ('performance_schema','information_schema','sys','mysql') and (UPPER(view_definition) like '%ASC%' or UPPER(view_definition) like '%DESC%')
select routine_schema, routine_name, routine_type, UPPER(routine_definition) from information_schema.routines where routine_schema not in ('performance_schema','information_schema','sys','mysql') and (UPPER(routine_definition) like '%ASC%' or UPPER(routine_definition) like '%DESC%')
select TRIGGER_SCHEMA, TRIGGER_NAME, 'TRIGGER', UPPER(ACTION_STATEMENT) from information_schema.triggers where TRIGGER_SCHEMA not in ('performance_schema','information_schema','sys','mysql') and (UPPER(ACTION_STATEMENT) like '%ASC%' or UPPER(ACTION_STATEMENT) like '%DESC%')
select event_schema, event_name, 'EVENT', UPPER(EVENT_DEFINITION) from information_schema.events where event_schema not in ('performance_schema','information_schema','sys','mysql') and (UPPER(event_definition) like '%ASC%' or UPPER(event_definition) like '%DESC%')
select 'global.sql_mode', 'does not contain either NO_ZERO_DATE or NO_ZERO_IN_DATE which allows insertion of zero dates' from (SELECT @@global.sql_mode like '%NO_ZERO_IN_DATE%' and @@global.sql_mode like '%NO_ZERO_DATE%' as zeroes_enabled) as q where q.zeroes_enabled = 0
select 'session.sql_mode', concat(' of ', q.thread_count, ' session(s) does not contain either NO_ZERO_DATE or NO_ZERO_IN_DATE which allows insertion of zero dates') FROM (select count(thread_id) as thread_count from performance_schema.variables_by_thread WHERE variable_name = 'sql_mode' and (variable_value not like '%NO_ZERO_IN_DATE%' or variable_value not like '%NO_ZERO_DATE%')) as q where q.thread_count > 0
select TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, concat('column has zero default value: ', COLUMN_DEFAULT) from information_schema.columns where TABLE_SCHEMA not in ('performance_schema','information_schema','sys','mysql') and DATA_TYPE in ('timestamp', 'datetime', 'date') and COLUMN_DEFAULT like '0000-00-00%'
select A.schema_name, A.table_name, 'present in INFORMATION_SCHEMA''s INNODB_SYS_TABLES table but missing from TABLES table' from (select distinct replace(replace(replace(replace(replace(replace(replace(replace(replace(replace(replace(substring_index(NAME, '/',1), '@002d', '-'), '@003a', ':'), '@002e', '.'), '@0024', '$'), '@0021', '!'), '@003f', '?'), '@0025', '%'), '@0023', '#'), '@0026', '&'), '@002a', '*'), '@0040', '@')  as schema_name, replace(replace(replace(replace(replace(replace(replace(replace(replace(replace(replace(substring_index(substring_index(NAME, '/',-1),'#',1), '@002d', '-'), '@003a', ':'), '@002e', '.'), '@0024', '$'), '@0021', '!'), '@003f', '?'), '@0025', '%'), '@0023', '#'), '@0026', '&'), '@002a', '*'), '@0040', '@')  as table_name from information_schema.innodb_sys_tables where NAME like '%/%') A left join information_schema.tables I on A.table_name = I.table_name and A.schema_name = I.table_schema where A.table_name not like 'FTS_0%' and (I.table_name IS NULL or I.table_schema IS NULL) and A.table_name not REGEXP '@[0-9]' and A.schema_name not REGEXP '@[0-9]'
select a.table_schema, a.table_name, concat('recognized by the InnoDB engine but belongs to ', a.engine) from information_schema.tables a join (select replace(replace(replace(replace(replace(replace(replace(replace(replace(replace(replace(substring_index(NAME, '/',1), '@002d', '-'), '@003a', ':'), '@002e', '.'), '@0024', '$'), '@0021', '!'), '@003f', '?'), '@0025', '%'), '@0023', '#'), '@0026', '&'), '@002a', '*'), '@0040', '@')  as table_schema, replace(replace(replace(replace(replace(replace(replace(replace(replace(replace(replace(substring_index(substring_index(NAME, '/',-1),'#',1), '@002d', '-'), '@003a', ':'), '@002e', '.'), '@0024', '$'), '@0021', '!'), '@003f', '?'), '@0025', '%'), '@0023', '#'), '@0026', '&'), '@002a', '*'), '@0040', '@')  as table_name from information_schema.innodb_sys_tables where NAME like '%/%') b on a.table_schema = b.table_schema and a.table_name = b.table_name where a.engine != 'Innodb'
FLUSH LOCAL TABLES
SELECT TABLE_SCHEMA, TABLE_NAME FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA not in ('information_schema', 'performance_schema', 'sys')
CHECK TABLE `mysql`.`columns_priv` FOR UPGRADE
CHECK TABLE `mysql`.`db` FOR UPGRADE
CHECK TABLE `mysql`.`engine_cost` FOR UPGRADE
CHECK TABLE `mysql`.`event` FOR UPGRADE
CHECK TABLE `mysql`.`func` FOR UPGRADE
CHECK TABLE `mysql`.`general_log` FOR UPGRADE
CHECK TABLE `mysql`.`gtid_executed` FOR UPGRADE
CHECK TABLE `mysql`.`help_category` FOR UPGRADE
CHECK TABLE `mysql`.`help_keyword` FOR UPGRADE
CHECK TABLE `mysql`.`help_relation` FOR UPGRADE
CHECK TABLE `mysql`.`help_topic` FOR UPGRADE
CHECK TABLE `mysql`.`innodb_index_stats` FOR UPGRADE
CHECK TABLE `mysql`.`innodb_table_stats` FOR UPGRADE
CHECK TABLE `mysql`.`ndb_binlog_index` FOR UPGRADE
CHECK TABLE `mysql`.`plugin` FOR UPGRADE
CHECK TABLE `mysql`.`proc` FOR UPGRADE
CHECK TABLE `mysql`.`procs_priv` FOR UPGRADE
CHECK TABLE `mysql`.`proxies_priv` FOR UPGRADE
CHECK TABLE `mysql`.`server_cost` FOR UPGRADE
CHECK TABLE `mysql`.`servers` FOR UPGRADE
CHECK TABLE `mysql`.`slave_master_info` FOR UPGRADE
CHECK TABLE `mysql`.`slave_relay_log_info` FOR UPGRADE
CHECK TABLE `mysql`.`slave_worker_info` FOR UPGRADE
CHECK TABLE `mysql`.`slow_log` FOR UPGRADE
CHECK TABLE `mysql`.`tables_priv` FOR UPGRADE
CHECK TABLE `mysql`.`time_zone` FOR UPGRADE
CHECK TABLE `mysql`.`time_zone_leap_second` FOR UPGRADE
CHECK TABLE `mysql`.`time_zone_name` FOR UPGRADE
CHECK TABLE `mysql`.`time_zone_transition` FOR UPGRADE
CHECK TABLE `mysql`.`time_zone_transition_type` FOR UPGRADE
CHECK TABLE `mysql`.`user` FOR UPGRADE

check.txt

Cannot set LC_ALL to locale en_US.UTF-8: No such file or directory
WARNING: Using a password on the command line interface can be insecure.
The MySQL server at 172.17.0.3:3306, version 5.7.33 - MySQL Community Server
(GPL), will now be checked for compatibility issues for upgrade to MySQL
8.0.24...

1) Usage of old temporal type
  No issues found

2) Usage of db objects with names conflicting with new reserved keywords
  No issues found

3) Usage of utf8mb3 charset
  No issues found

4) Table names in the mysql schema conflicting with new tables in 8.0
  No issues found

5) Partitioned tables using engines with non native partitioning
  No issues found

6) Foreign key constraint names longer than 64 characters
  No issues found

7) Usage of obsolete MAXDB sql_mode flag
  No issues found

8) Usage of obsolete sql_mode flags
  Notice: The following DB objects have obsolete options persisted for
    sql_mode, which will be cleared during upgrade to 8.0.
  More information:

https://dev.mysql.com/doc/refman/8.0/en/mysql-nutshell.html#mysql-nutshell-removals

  global system variable sql_mode - defined using obsolete NO_AUTO_CREATE_USER
    option

9) ENUM/SET column definitions containing elements longer than 255 characters
  No issues found

10) Usage of partitioned tables in shared tablespaces
  No issues found

11) Circular directory references in tablespace data file paths
  No issues found

12) Usage of removed functions
  No issues found

13) Usage of removed GROUP BY ASC/DESC syntax
  No issues found

14) Removed system variables for error logging to the system log configuration
  To run this check requires full path to MySQL server configuration file to be specified at 'configPath' key of options dictionary
  More information:

https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-13.html#mysqld-8-0-13-logging

15) Removed system variables
  To run this check requires full path to MySQL server configuration file to be specified at 'configPath' key of options dictionary
  More information:

https://dev.mysql.com/doc/refman/8.0/en/added-deprecated-removed.html#optvars-removed

16) System variables with new default values
  To run this check requires full path to MySQL server configuration file to be specified at 'configPath' key of options dictionary
  More information:

https://mysqlserverteam.com/new-defaults-in-mysql-8-0/

17) Zero Date, Datetime, and Timestamp values
  No issues found

18) Schema inconsistencies resulting from file removal or corruption
  No issues found

19) Tables recognized by InnoDB that belong to a different engine
  No issues found

20) Issues reported by 'check table x for upgrade' command
  No issues found

21) New default authentication plugin considerations
  Warning: The new default authentication plugin 'caching_sha2_password' offers
    more secure password hashing than previously used 'mysql_native_password'
    (and consequent improved client connection authentication). However, it also
    has compatibility implications that may affect existing MySQL installations.
    If your MySQL installation must serve pre-8.0 clients and you encounter
    compatibility issues after upgrading, the simplest way to address those
    issues is to reconfigure the server to revert to the previous default
    authentication plugin (mysql_native_password). For example, use these lines
    in the server option file:

    [mysqld]
    default_authentication_plugin=mysql_native_password

    However, the setting should be viewed as temporary, not as a long term or
    permanent solution, because it causes new accounts created with the setting
    in effect to forego the improved authentication security.
    If you are using replication please take time to understand how the
    authentication plugin changes may impact you.
  More information:

https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password-compatibility-issues


https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password-replication

Errors:   0
Warnings: 1
Notices:  1

No fatal errors were found that would prevent an upgrade, but some potential issues were detected. Please ensure that the reported issues are not significant before upgrading.

The pre-pre SQL check

I now am armed with an simplified single SQL statement. It does of course take a long to run in a cluster with thousands of tables.

select A.schema_name, A.table_name, 
       'present in INFORMATION_SCHEMA''s INNODB_SYS_TABLES table but missing from TABLES table' 
from (select distinct replace(replace(replace(replace(replace(replace(replace(replace(replace(replace(replace(substring_index(NAME, '/',1), '@002d', '-'), '@003a', ':'), '@002e', '.'), '@0024', '$'), '@0021', '!'), '@003f', '?'), '@0025', '%'), '@0023', '#'), '@0026', '&'), '@002a', '*'), '@0040', '@')  as schema_name, 
replace(replace(replace(replace(replace(replace(replace(replace(replace(replace(replace(substring_index(substring_index(NAME, '/',-1),'#',1), '@002d', '-'), '@003a', ':'), '@002e', '.'), '@0024', '$'), '@0021', '!'), '@003f', '?'), '@0025', '%'), '@0023', '#'), '@0026', '&'), '@002a', '*'), '@0040', '@')  as table_name
 from information_schema.innodb_sys_tables 
where NAME like '%/%') A 
left join information_schema.tables I on A.table_name = I.table_name and A.schema_name = I.table_schema 
where A.table_name not like 'FTS_0%' 
and (I.table_name IS NULL or I.table_schema IS NULL) 
and A.table_name not REGEXP '@[0-9]' 
and A.schema_name not REGEXP '@[0-9]')

I then performed a number of drop/remove/restart/re-create/discard tablespace steps with no success. As a managed service RDS the only course of action now is to open an AWS Support ticket for help with this specific internal corruption.

Upgrading to AWS Aurora MySQL 8

With Aurora MySQL 8 now generally available to all, you may want to consider the plan for an upgrade path if you would like to take advantage of the new features for your application, for example, Common Table Expressions (CTE). This new major release has a much improved and streamlined upgrade progress from Aurora MySQL 5.7.

This tutorial will provide all the steps to allow you to try out setting up an Aurora cluster and performing an upgrade without the impact on your existing AWS environment. The two pre-requisites to getting started are:

You can find all the CLI cut/paste commands in my AWS Tutorials repo. This will lead you through all of the various AWS dependencies for a successful RDS Aurora cluster including IAM, KMS, VPC and EC2 requirements.

Create an RDS Aurora MySQL Cluster and Aurora MySQL Major upgrade – Aurora 2.x to Aurora 3.x can provide you with a POC of the primary operations path to achieving the goal of this post in under 30 minutes.

While this example will produce an upgraded cluster with some warnings, in real life a more detailed upgrade assessment is needed for any new version of software. The MySQL and Aurora pre-checks can be performed to minimize surprises during the final process of your data migration.

mysqlcheck –check-upgrade and the mysqlsh util.checkForServerUpgrade() pre-checks can help to assist in being prepared and not have your Cluster instances with the incompatible-parameters status. At this point download the upgrade-prechecks.log Aurora Log and trash your cluster and instance. They are unusable. Reviewing the upgrade-prechecks.log can contain more information than mysqlsh util.checkForServerUpgrade() output.

With an Aurora cluster configured with an instance parameter group enabling MySQL binary log replication, it is easy to have a functioning Aurora 5.7 Cluster with real-time replication to an Aurora 8 Cluster to minimize any downtime in your production environment and then benefit from an atomic data dictionary, roles, descending indexes, improved internal temporary table, additional JSON functions, Window Functions, CTEs and more!

More Reading

#WDILTW – What can I run from my AWS Aurora database

When you work with AWS Aurora you have limited admin privileges. There are some different grants for MySQL including SELECT INTO S3 and LOAD FROM S3 that replace the loss of functionality to SELECT INTO OUTFILE and mysqldump/mysqlimport using a delimited format. While I know and use lambda capabilities, I have never executed anything with INVOKE LAMDBA directly from the database.

This week I found out about INVOKE COMPREHEND (had to look that product up), and INVOKE SAGEMAKER (which I used independently). These are machine learning capabilities that enable you to build custom integrations using Comprehend and SageMaker. I did not have any chance to evaluate these capabilities so I am unable to share any use cases or experiences. There are two built-in comprehend functions aws_comprehend_detect_sentiment() and aws_comprehend_detect_sentiment_confidence(), a likely future starting place. Sagemaker is invoked as an extension of a CREATE FUNCTION that provides the ALIAS AWS_SAGEMAKER_INVOKE_ENDPOINT syntax.

Also available are some MySQL status variables including Aurora_ml_logical_response_cnt, Aurora_ml_actual_request_cnt, Aurora_ml_actual_response_cnt, Aurora_ml_cache_hit_cnt, Aurora_ml_single_request_cnt.

Some googling found an interesting simple example, calculating the positive/negative sentiment and confidence of sentences of text. I could see this as useful for analyzing comments. I’ve included the example from this site here to encourage my readers to take a look as I plan to do. Post IAM configuration I will be really curious to evaluate the responsiveness of this example. Is this truly a batch only operation or could you return some meaningful response timely?

This also lead to bookmarking for reading https://awsauroralabsmy.com/, https://github.com/aws-samples/amazon-aurora-labs-for-mysql/ and https://squidfunk.github.io/mkdocs-material/ all from this one page.

#WDILTW – Debugging failed http requests thru the web of redirects

There are reports that your website is down. You pull up the login page without incident. What’s next?

Monitoring is critical. How detailed is this? How frequently are you sampling? The resolution to any issue is only as good as the response to a paged alert. Who is looking into the issue? What escalation exists?

In today’s complex interconnected infrastructure is it ever that simple? When speaking about an AWS hosted solution, is it an AWS Issue? Does status.aws.amazon.com give you a clue? Does the inability to access other services/sites you may be using at this moment give an indicator of a larger problem? Is it AWS related for a service, an availability zone, or even an entire region? Having experienced all of those before sometimes its obvious, sometimes it is not. Or does a Twitter Search report other shared experiences of regional outages, was it that severed Verizon underwater cable?

I learned two things this week in triage of this situation. The first is that the old CLI tools you have been using for 20+ years still help in triage quickly. D not discount them or the detail they provide. I was able to identify and reproduce an underlying cause with just nslookup and curl. For many reviewing the outage the problem did not manifest as an error. It turned out there were two distinct paths from two separate domains to the ultimate target page. This was not immediately obvious and known, and there was no definitive network diagram to describe this.

When this was determined nslookup provided that there were two different resolved AWS ELBs. dig is also a useful command to master, for example to determine if an A record or CNAME for example.

$ nslookup demo.internal-example.com

demo.internal-example.com	canonical name = internal.us-east-1.elb.amazonaws.com.
Name:	 internal.us-east-1.elb.amazonaws.com
Address: 10.10.1.2
Name:	 internal.us-east-1.elb.amazonaws.com
Address: 10.10.0.3
Name:	 internal.us-east-1.elb.amazonaws.com
Address: 10.10.2.4
$ ▶ nslookup demo.public-example.com

Non-authoritative answer:
demo.public-example.com	         canonical name = external.us-east-1.elb.amazonaws.com.
Name:	 external.us-east-1.elb.amazonaws.com
Address: 23.123.111.222
Name:	 external.us-east-1.elb.amazonaws.com
Address: 50.200.211.222

The first indication was actually to find that one of the ELBs was not in the AWS account with all other resources, and this AWS account was not viewable. That is a separate discussion for why? curl then helped to traverse the various redirects of each ELB using these options

  • -i/–include – Include the headers
  • -k/–insecure – Allow insecure SSL connections
  • -L/–location – Follow redirects
$ curl -ikL external.us-east-1.elb.amazonaws.com
HTTP/1.1 301 Moved Permanently
Server: awselb/2.0
Date: Thu, 11 Feb 2021 20:34:47 GMT
Content-Type: text/html
Content-Length: 134
Location: https://external.us-east-1.elb.amazonaws.com:443/
Proxy-Connection: Keep-Alive
Connection: Keep-Alive
Age: 0

HTTP/1.1 200 Connection established

HTTP/2 302
date: Thu, 11 Feb 2021 20:34:48 GMT
content-length: 0
location: http://demo.unavailable.com
cache-control: no-cache

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 2071
Date: Thu, 11 Feb 2021 19:09:29 GMT
Last-Modified: Tue, 18 Dec 2018 05:32:31 GMT
Accept-Ranges: bytes
Server: AmazonS3
X-Cache: Hit from cloudfront
Via: 1.1 44914fa6421b789193cec8998428f8bd.cloudfront.net (CloudFront)
Proxy-Connection: Keep-Alive
Connection: Keep-Alive
Age: 1071

<html

Using these commands was nothing new, however identifying this single line provided a way to isolate within the chain of redirects where to focus.

content-length: 0

Ultimately the issue was not ELB related, but internal infrastructure behind this one ELB. When corrected the result was (trimmed for readability)

$ curl -ikL external.us-east-1.elb.amazonaws.com
HTTP/1.1 301 Moved Permanently
Server: awselb/2.0
Date: Thu, 11 Feb 2021 20:37:18 GMT
Content-Type: text/html
Content-Length: 134
Location: https://external.us-east-1.elb.amazonaws.com:443/
Proxy-Connection: Keep-Alive
Connection: Keep-Alive
Age: 0

HTTP/1.1 200 Connection established

HTTP/2 302
date: Thu, 11 Feb 2021 20:37:18 GMT
content-type: text/plain; charset=utf-8
content-length: 27
x-powered-by: 
location: /redirect
vary: Accept

HTTP/2 301
date: Thu, 11 Feb 2021 20:37:18 GMT
content-type: text/html
content-length: 162
location: /redirect/

HTTP/2 200
date: Thu, 11 Feb 2021 20:37:18 GMT
content-type: text/html
content-length: 2007
last-modified: Tue, 02 Feb 2021 03:27:13 GMT
vary: Accept-Encoding

<html>
  <head>

In summary, and a means to triage a future problem, or to monitor:

Failure success
$ egrep -i "^HTTP|^Content-Length" 

HTTP/1.1 301 Moved Permanently
Content-Length: 134
HTTP/1.1 200 Connection established
HTTP/2 302
content-length: 0
HTTP/1.1 200 OK
Content-Length: 2071


$ egrep -i "^HTTP|^Content-Length"

HTTP/1.1 301 Moved Permanently
Content-Length: 134
HTTP/1.1 200 Connection established
HTTP/2 302
content-length: 27
HTTP/2 301
content-length: 162
HTTP/2 200
content-length: 2007

With the proliferation of GUI based monitoring products it is likely for many organizations that multiple different monitors are available, but are they triggered, and do they enable you to pinpoint the underlying issue? Long gone are the days of a Pingdom type ping of a URL from multiple locations every minute and a report of latency or errors then you start digging. This week I learned about DataDog Synthetic Monitoring. DataDog is a well established monitoring solution that I have only just started to understand, I wish I had a year to master to delving into.

In later review this monitoring showed an already configured browser test for this top level URL that was failing, it was simply not alerting correctly. The Synthetic monitoring is far more advanced, providing an ITTT workflow, and even provides physical images of the rendered pages.

This experience highlighted the need to have detailed and redundant monitoring but also the right process to triage and drill down.

I looked into trying to provide an example of this DataDog feature, however the free tier monitoring solution does not provide all the advanced features for the evaluation I’d like. You can look at some product examples.

Observability is a key tool in any operations management. It should be one of the pillars where a continued investment of time, resources and skills development can add significant value for business continuity.

#WDILTW – AWS RDS Proxy

This week I was evaluating AWS RDS Proxy. If you are familiar with the Relational Database Service (RDS) and use MySQL or Postgres, this is an additional option to consider.

Proxies in general by the name accept incoming requests and perform some management before those requests are forwarded to the ultimate target.

RDS proxy takes incoming database connections and can perform several capabilities including collection pooling and capping the total database connections with each configured proxy holding a percentage of the total connections for the target cluster. The proxy can handle routing only for writer instances (at this time) to minimize a planned or unplanned failover. The RDS proxy however does not address the underlying problem of too many connections to the database, it just adds another layer, that is or may be more configurable or tunable than an application requesting connections.

The RDS Proxy is automatically Highly Available (HA). You can determine this by looking at the host IPs of the MySQL processlist. I have yet to identify any other means of seeing if a connection is a proxy connection at the database level if you are using the same credentials. RDS Proxy does give you the ability via Secrets Manager to connect as a different user. You can specify a connection initialization query. I used a SET variable so that application could determine if it was using a Proxy however that is of little benefit in server connection management.

The RDS proxy can enforce TLS, something which in my opinion should always be used for application to data store communications, but historically has been overlooked at practically every company I have worked for or consulted to. Just because you are communicating within a VPC does not protect your communications from actors within your VPC. I can remember at a prior employment the disappointment of cross-region replication that was encrypted being dropped because it was too hard to migrate or manage. That shows an all too common problem of laziness over security.

If you are new to a particular technology the age of the Internet gives you search capabilities to find numerous articles. If you search for anything AWS you will generally always get as the top results the official pages, it takes some digging to find other articles. Prior to this lesson I had only read about RDS Proxy, I had never actually setup one.

When anybody is learning something new, I like to say your value add is not to just read an article, but reproduce and then adapt or enhance. This Amazon example is no different. Repeating each step showed multiple errors in syntax which I can contribute back as comments. If this was open source code, you could contribute a pull request (PR). The good news is the first example of configuring a proxy includes by GUI and CLI commands. I always like to do my work on the command line, even the first iteration. You cannot scale a human moving a mouse around and clicking. What I found however was that the official AWS CLI lacked a key component of the proxy setup around group targets. The UI provides a capability that the CLI did not. Another discrepancy was when I was making modifications to the proxy in the GUI I would get an error, but I could make that change via the CLI. These discrepancies are an annoyance for consistency and first evaluation.

So what was the outcome of my evaluation? First I was able to demonstrate I could add a proxy to an existing cluster in one of our test environments and direct traffic from a mysql client thru the proxy to the target database. I was able to use Secrets Manager (SSM) to enforce credentials for authorization. I did not look into Identity Access Management (IAM) roles support. I was able to benchmark with sysbench simulated load to compare latency of the proxy traffic versus direct traffic. I have simplified my examples so that anybody can run these tests themselves for simple validation.

I could enforce TLS communications for the mysql client testing, however our company internal http proxy caused the usual self signed certificate issues with sysbench, something I really need to master. Surprisingly I looked at what options sysbench gave me for SSL options (side bar we should always refer to this as TLS instead of SSL), but the defined options for the installed recent version are still using the ssl name. The scope of options differed from the source code online so a question as to why? That’s the great thing about open source, you can read the code. You may have even met the author at a conference presentation.

Where the evaluation hit a business impact was in comparative performance. I am still awaiting an AWS support response to my evaluation.

What’s next is to get an application team to evaluate end to end database operations, easily done as Route 53 DNS is used for endpoint communications.
Where I got stuck was incorporating the setup of RDS proxy within Terraform We currently use version 12. While there was the aws_db_proxy module, I needed an updated version of the aws provider to our environment. The official Hashicorp documentation of the resource really does not highlight the complexity necessary to create a proxy. While you will have already configured a VPC, and subnets, even Ingres security groups and secrets which all parts necessary for RDS cluster, you need a number of integrated pieces.

You will need an IAM role for your proxy, but that role requires a policy to use KMS to get the secrets you wish to use for authorization. This interdependency of KMS and secret ARNs make is difficult to easily launch a RDS proxy as you would an RDS aurora cluster. Still it’s a challenge for something else to do. The added complexity is the RDS proxy also needs an authorization argument, for example the –auth argument in the AWS CLI. I see this as a complexity for management of RDS users that you wish to also be configured for use in the proxy.

As with any evaluation or proof of concept (POC) the devil is in the details. How do you monitor your new resources, what logging is important to know, what types of errors can happen, and how do you address these.

Another issue I had was the RDS proxy required a new version of the AWS client in order to run RDS commands such as describe-db-proxies. That adds an additional administrative dependency to be rolled out.

Proxies for MySQL have been around for decades, I can remember personally working on the earliest version of MySQL Proxy at MySQL Inc back in 2007. The gold standard if you use MySQL, is ProxySQL by Sysown’s René Cannaò. This is a topic for a different discussion.

Checkout my code for this work.

Reading

Enforcing a least privileged security model can be hard

In a greenfield environment you generally have the luxury to right any wrongs of any past tech debt. It can be more difficult to apply this to an existing environment? For example, my setup is configured to just work with the AWS CLI and various litmus tests to validate that. Generally instructions would include, valid your AWS access.  This can be as simple as: 

$ aws ec2 describe-regions
$ aws ec2 describe-availability-zones --profile oh

As part of documenting some upcoming Athena/Hadoop/Pig/RDBMS posts I decided it was important to separate out the AWS IAM privileges with a new user and permission policies.This introduced a number of steps that simply do not work.  Creating a new AWS IAM user is not complex. Validating console and API access of that user required some revised setup.

$ aws ec2 describe-regions

An error occurred (AuthFailure) when calling the DescribeRegions operation: AWS was not able to validate the provided access credentials

In order to be able to use the CLI you require your aws_access_key_id and aws_secret_access_key information as well as aws_session_token if used. In order for a new individual user to gain this information, you also need a number of policy rules including the ability to ListAccessKeys, CreateAccessKey and potentially DeleteAccessKey.

 
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "VisualEditor0",
            "Effect": "Allow",
            "Action": [
                "iam:DeleteAccessKey",
                "iam:CreateAccessKey",
                "iam:ListAccessKeys"
            ],
            "Resource": "arn:aws:iam::[account]:user/[username]"
        }
    ]
}

In this example, we also restrict the least privileged model with a specific user resource ARN. For a single user account that is workable, for a large organization it would not.
This gives the ability to configure your AWS CLI via typical ~/.aws/credentials and/or ~/aws/config settings. Performing  the litmus test now gives:

$ aws ec2 describe-regions

An error occurred (UnauthorizedOperation) when calling the DescribeRegions operation: You are not authorized to perform this operation.

This requires a policy of:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "VisualEditor0",
            "Effect": "Allow",
            "Action": [
                "ec2:DescribeAvailabilityZones",
                "ec2:DescribeRegions"
            ],
            "Resource": "*"
        }
    ]
}
$ aws ec2 describe-regions | jq '.Regions[0]'
{
  "Endpoint": "ec2.eu-north-1.amazonaws.com",
  "RegionName": "eu-north-1",
  "OptInStatus": "opt-in-not-required"
}


$ aws ec2 describe-availability-zones --filter "Name=region-name,Values=us-east-1" | jq -r '.AvailabilityZones[].ZoneName'

us-east-1a
us-east-1b
us-east-1c
us-east-1d
us-east-1e
us-east-1f

However, this may be too restrictive for a larger organization.  The EC2 Access level for ‘list’ includes currently over 120 individual permissions. A more open policy could be:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "VisualEditor0",
            "Effect": "Allow",
            "Action": [
                "ec2:Describe*"
            ],
            "Resource": "*"
        }
    ]
}

However this does not provide all of the EC2 ‘list’ actions, e.g. ExportClientVpnClientConfiguration, and it includes several ‘read’ actions, e.g. DescribeVolumesModifications.
Selecting the ‘list’ tickbox via the GUI will provide all actions by name individually in the policy action list, currently 117, however this is not forward compatible for any future list defined access level actions.

This is before the exercise to starting granting access to a new AWS service – Athena, and its data source S3.

A testimony to Linux resilience

A client released a new version of their website onto 20 AWS m1.medium instances (current site at peak load runs approximately 60 m1.medium webservers).
It was clearly an unsuccessful release, but what was surprising was the system did not actually crash, it was effectively a meltdown, but servers were still operational with load averages > 100. I was impressed with the ability for Linux to still (just) function.

parallel-ssh -o StrictHostKeyChecking=no -o ConnectTimeout=5 -i -h   uptime
 18:01:00 up 18:44,  0 users,  load average: 104.26, 110.03, 113.12
 18:01:00 up 18:56,  1 user,  load average: 62.33, 87.75, 90.40
 18:01:03 up 18:44,  0 users,  load average: 105.28, 115.33, 115.61
 18:01:03 up 18:44,  0 users,  load average: 149.35, 155.74, 133.68
 18:01:03 up 18:51,  0 users,  load average: 124.63, 121.31, 115.91
 18:01:03 up 18:44,  0 users,  load average: 118.99, 109.92, 110.60
 18:01:04 up 18:44,  0 users,  load average: 121.73, 118.40, 113.50
 18:01:04 up 18:44,  0 users,  load average: 113.89, 120.56, 114.64
 18:01:05 up 18:44,  0 users,  load average: 119.30, 119.71, 115.65
 18:01:05 up 18:44,  0 users,  load average: 126.33, 120.33, 119.02
 18:01:05 up 18:44,  0 users,  load average: 117.47, 113.01, 112.84
 18:01:05 up 18:44,  0 users,  load average: 172.21, 158.62, 135.19
 18:01:05 up 18:44,  0 users,  load average: 115.81, 114.96, 116.18
 18:01:05 up 18:44,  0 users,  load average: 122.25, 115.32, 115.27
 18:01:05 up 18:44,  0 users,  load average: 164.13, 168.04, 153.03
 18:01:05 up 18:44,  0 users,  load average: 123.80, 114.94, 110.29
 18:01:06 up 18:44,  0 users,  load average: 173.64, 173.80, 158.76
 18:01:06 up 18:44,  0 users,  load average: 132.52, 140.94, 135.43
 18:01:06 up 18:44,  0 users,  load average: 166.17, 151.68, 135.23
 18:01:06 up 18:44,  0 users,  load average: 170.14, 164.03, 145.31

The AWS m1.medium is a single CPU instance.

$ cat /proc/cpuinfo
processor	: 0
vendor_id	: GenuineIntel
cpu family	: 6
model		: 45
model name	: Intel(R) Xeon(R) CPU E5-2650 0 @ 2.00GHz
stepping	: 7
cpu MHz		: 1800.000
cache size	: 20480 KB
fpu		: yes
fpu_exception	: yes
cpuid level	: 13
wp		: yes
flags		: fpu de tsc msr pae cx8 cmov pat clflush mmx fxsr sse sse2 ss ht syscall nx lm up rep_good aperfmperf unfair_spinlock pni pclmulqdq ssse3 cx16 sse4_1 sse4_2 x2apic popcnt aes hypervisor lahf_lm arat epb xsaveopt pln pts dts
bogomips	: 3600.00
clflush size	: 64
cache_alignment	: 64
address sizes	: 46 bits physical, 48 bits virtual
power management:

An unexplained connection experience

The “Too many connections” problem is a common issue with applications using excessive permissions (and those that grant said global permissions). MySQL will always grant a user with SUPER privileges access to a DB to investigate the problem with a SHOW PROCESSLIST and where you can check the limits. I however found the following.

mysql> show global variables like 'max_connections';
+-----------------+-------+
| Variable_name   | Value |
+-----------------+-------+
| max_connections | 2000  |
+-----------------+-------+
1 row in set (0.00 sec)

mysql> show global status like 'max%';
+----------------------+-------+
| Variable_name        | Value |
+----------------------+-------+
| Max_used_connections | 6637  |
+----------------------+-------+
1 row in set (0.00 sec)

How can the max_used_connection exceed max_connections? This is possible because you can dynamically change max_connections in a normal MySQL environment. However ,this is AWS RDS where you cannot change variables dynamically via mysql client. You can via other command line options but this has not happened. Furthermore, this server is using the defauly.mysql.5.5 parameter group to further validate the claim that it has not been changed.

I do not have an answer for the client in this case.

I would also add this as another ding on the usability of RDS in production environments. I was locked out of the DB for a long time, and with no visibility of what was going on. The only options were wait, or restart the server. RDS does not provide this level of visibility of the processlist using a privileged user that could see what was going on. Perhaps an interface they should consider in future.

Additional DB objects in AWS RDS

To expand on Jervin’s Default RDS Account Privileges, RDS for MySQL provides a number of routines and triggers defined the the ‘mysql’ meta schema. These help in various tasks because the SUPER privilege is not provided.

SELECT routine_schema,routine_name
FROM information_schema.routines;
+----------------+-----------------------------------+
| routine_schema | routine_name                      |
+----------------+-----------------------------------+
| mysql          | rds_collect_global_status_history |
| mysql          | rds_disable_gsh_collector         |
| mysql          | rds_disable_gsh_rotation          |
| mysql          | rds_enable_gsh_collector          |
| mysql          | rds_enable_gsh_rotation           |
| mysql          | rds_kill                          |
| mysql          | rds_kill_query                    |
| mysql          | rds_rotate_general_log            |
| mysql          | rds_rotate_global_status_history  |
| mysql          | rds_rotate_slow_log               |
| mysql          | rds_set_configuration             |
| mysql          | rds_set_gsh_collector             |
| mysql          | rds_set_gsh_rotation              |
| mysql          | rds_show_configuration            |
| mysql          | rds_skip_repl_error               |
+----------------+-----------------------------------+
15 rows in set (0.00 sec)

SELECT trigger_schema, trigger_name,
          CONCAT(event_object_schema,'.',event_object_table) AS table_name,
          CONCAT(action_timing,' ',event_manipulation) AS trigger_action
FROM information_schema.triggers;
+----------------+--------------+------------+----------------+
| trigger_schema | trigger_name | table_name | trigger_action |
+----------------+--------------+------------+----------------+
| mysql          | block_proc_u | mysql.proc | BEFORE UPDATE  |
| mysql          | block_proc_d | mysql.proc | BEFORE DELETE  |
| mysql          | block_user_i | mysql.user | BEFORE INSERT  |
| mysql          | block_user_u | mysql.user | BEFORE UPDATE  |
| mysql          | block_user_d | mysql.user | BEFORE DELETE  |
+----------------+--------------+------------+----------------+

Cloning MySQL 5.6 instances

A tip for all those cloud users that like cloning database servers (as reported in my book Effective MySQL – Replication Techniques in Depth).

Starting with MySQL 5.6, MySQL instances have a UUID. Cloning servers to quickly create slaves will result in the following error message.

mysql> SHOW SLAVE STATUSG
...
  Last_IO_Error: Fatal error: The slave I/O thread stops because master and slave have equal MySQL server UUIDs; these UUIDs must be different for replication to work.
...

The solution is simple. Clear our the file based configuration file (located in the MySQL datadir) and restart the MySQL instance.

$ rm -f /mysql/data/auto.cnf
$ service mysql restart

Basic scalability principles to avert downtime

In the press in the last two days has been the reported outage of Amazon Web Services Elastic Compute Cloud (EC2) in just one North Virginia data center. This has affected many large website includes FourSquare, Hootsuite, Reddit and Quora. A detailed list can be found at ec2disabled.com.

For these popular websites was this avoidable? Absolutely.

Basic scalability principles if deployed in these systems architecture would have averted the significant downtime regardless of your development stack. While I work primarily in MySQL these principles are not new, nor are they complicated, however they are fundamental concepts in scalability that apply to any technology including the popular MongoDB that is being used by a number of affected sites.

Scalability 101 involves some simple basic rules. Here are just two that seem to have been ignored by many affected by this recent AWS EC2 outage.

  1. Never put all your eggs in one basket. If you rely on AWS completely, or you rely on just one availability zone that is putting all your eggs in one basket.
  2. Always keep your important data close to home. When it comes to what is most critical to your business you need access and control to your information. At 5am in the morning when the CEO asks how long will our business be unavailabla and what is needed to resolve the problem, the answer “We have no control over this and have no ETA” is not an acceptable answer.

With a successful implementation and appropriate data redundancy you may not have an environment immediately available however you have access to your important information and the ability to create one quickly. Many large hosting companies can provide additional H/W on near demand, especially if you have an initial minimal footprint. Indeed using Amazon Web Services (AWS) as a means to avert a data center disaster is an ideal implementation of Infrastructure As A Service (IAAS). Even with this issue, organizations that had planned for this type of outage could have easily migrated to another AWS availability zone that was unaffected.

Furthermore, system architecture to support various levels of data availability and scalability ensure you can handle many more various types of unavailability without significant system down time as recently seen. There are many different types of availability and unavailability, know what your definition of downtime is and supporting disasters should be your primary focus of scalability, not an after thought.

As an expert in performance and scalability I can help your organization in the design of a suitable architecture to support successful scalability and disaster. This is not rocket science however many organizations gamble without the expertise of a professional to ensure business viability.