WeSQL Introduction – MySQL running on S3

I recently became aware of WeSQL. A MySQL-compatible database that separates compute and storage, using S3 as the storage layer. The product uses a columnar format by default which is significantly more space-efficient than InnoDB.

WeSQL introduces a new storage engine called SmartEngine using a LSM-tree-based structure that is ideal for a storage bucket implementation, and documentation shows the implementation of raft replication to combat latency concerns. There is a lot more information to review, the serverless architecture and WeScale, a database proxy and resource manager.

It was very easy to take it for an initial spin using a docker container and an AWS S3 bucket. I would really like to try CloudFlare R2 which implements the S3 API.

Under the covers there are over 180 new variables comprising 83 for the smartengine, 57 for raft, and 22 for objectstore and more. This implies a lot of tunable options and a lot of complexity to optimize for a variety of workloads using the 79 new status variables.

I was able to launch a demo and confirm

mysql> SELECT VERSION();
+-----------+
| VERSION() |
+-----------+
| 8.0.35    |
+-----------+
1 row in set (0.01 sec)

mysql> SELECT @@wesql_version;
+-----------------+
| @@wesql_version |
+-----------------+
| 0.1.0           |
+-----------------+
1 row in set (0.00 sec)

One of my early tests showed that it does not support FOREIGN KEYS, which is not a major concern.

ERROR 1235 (42000) at line 10: SE currently doesn't support foreign key constraints

I did have some subsequent issues with the current docs version 8.0.35-0.1.0_beta1.37 and I did revert to a prior version from docs earlier this week 8.0.35-0.1.0_beta1.gedaf338.36. Given it’s a very new product I am sure there is a lot of ongoing development.

This is just a quick introduction but it’s a definitely a different architecture in the RDBMS landscape for MySQL compatibility. I hope to run some more tests using the provided sysbench use cases and my own workloads to delve under the covers more.

New Variables

branch_objectstore_id
clone_autotune_concurrency
clone_block_ddl
clone_buffer_size
clone_ddl_timeout
clone_delay_after_data_drop
clone_donor_timeout_after_network_failure
clone_enable_compression
clone_max_concurrency
clone_max_data_bandwidth
clone_max_network_bandwidth
clone_ssl_ca
clone_ssl_cert
clone_ssl_key
clone_valid_donor_list
initialize_branch_objectstore_id
initialize_from_objectstore
initialize_objectstore_bucket
initialize_objectstore_endpoint
initialize_objectstore_provider
initialize_objectstore_region
initialize_objectstore_use_https
initialize_repo_objectstore_id
initialize_smartengine_objectstore_data
objectstore_bucket
objectstore_endpoint
objectstore_mtr_test_bucket_dir
objectstore_provider
objectstore_region
objectstore_use_https
raft_replication_allow_no_valid_entry
raft_replication_appliedindex_force_delay
raft_replication_archive_log_bin_index
raft_replication_archive_recovery
raft_replication_archive_recovery_stop_datetime
raft_replication_auto_leader_transfer
raft_replication_auto_leader_transfer_check_seconds
raft_replication_auto_reset_match_index
raft_replication_check_commit_index_interval
raft_replication_checksum
raft_replication_cluseter_info_on_objectstore
raft_replication_cluster_id
raft_replication_cluster_info
raft_replication_configure_change_timeout
raft_replication_current_term
raft_replication_disable_election
raft_replication_disable_fifo_cache
raft_replication_dynamic_easyindex
raft_replication_election_timeout
raft_replication_flow_control
raft_replication_force_change_meta
raft_replication_force_recover_index
raft_replication_force_reset_meta
raft_replication_force_single_mode
raft_replication_force_sync_epoch_diff
raft_replication_heartbeat_thread_cnt
raft_replication_io_thread_cnt
raft_replication_large_batch_ratio
raft_replication_large_event_split_size
raft_replication_large_trx
raft_replication_learner_heartbeat
raft_replication_learner_node
raft_replication_learner_pipelining
raft_replication_learner_timeout
raft_replication_log_cache_size
raft_replication_log_level
raft_replication_log_type_node
raft_replication_max_delay_index
raft_replication_max_log_size
raft_replication_max_packet_size
raft_replication_min_delay_index
raft_replication_mts_recover_use_index
raft_replication_new_follower_threshold
raft_replication_optimistic_heartbeat
raft_replication_pipelining_timeout
raft_replication_prefetch_cache_size
raft_replication_prefetch_wakeup_ratio
raft_replication_prefetch_window_size
raft_replication_purged_gtid
raft_replication_recover_backup
raft_replication_recover_new_cluster
raft_replication_reset_prefetch_cache
raft_replication_send_timeout
raft_replication_start_index
raft_replication_sync_follower_meta_interva
raft_replication_with_cache_log
raft_replication_worker_thread_cnt
recovery_snapshot_from_objectstore
recovery_snapshot_only
recovery_snapshot_timestamp
recovery_snapshot_tmpdir
repo_objectstore_id
server_id_on_objectstore
serverless
smartengine_auto_shrink_enabled
smartengine_auto_shrink_schedule_interval
smartengine_batch_group_max_group_size
smartengine_batch_group_max_leader_wait_time_us
smartengine_batch_group_slot_array_size
smartengine_block_cache_size
smartengine_block_size
smartengine_bottommost_level
smartengine_bulk_load_size
smartengine_compact
smartengine_compaction_delete_percent
smartengine_compaction_task_extents_limit
smartengine_compaction_threads
smartengine_compression_options
smartengine_compression_per_level
smartengine_concurrent_writable_file_buffer_num
smartengine_concurrent_writable_file_buffer_switch_limit
smartengine_concurrent_writable_file_single_buffer_size
smartengine_data_dir
smartengine_deadlock_detect
smartengine_disable_auto_compactions
smartengine_disable_instant_ddl
smartengine_disable_online_ddl
smartengine_disable_parallel_ddl
smartengine_dump_memtable_limit_size
smartengine_enable_2pc
smartengine_estimate_cost_depth
smartengine_flush_delete_percent
smartengine_flush_delete_percent_trigger
smartengine_flush_delete_record_trigger
smartengine_flush_log_at_trx_commit
smartengine_flush_memtable
smartengine_flush_threads
smartengine_hotbackup
smartengine_idle_tasks_schedule_time
smartengine_level0_file_num_compaction_trigger
smartengine_level0_layer_num_compaction_trigger
smartengine_level1_extents_major_compaction_trigger
smartengine_level2_usage_percent
smartengine_level_compaction_dynamic_level_bytes
smartengine_lock_scanned_rows
smartengine_lock_wait_timeout
smartengine_master_thread_compaction_enabled
smartengine_master_thread_monitor_interval_ms
smartengine_max_background_dumps
smartengine_max_free_extent_percent
smartengine_max_row_locks
smartengine_max_shrink_extent_count
smartengine_max_write_buffer_number_to_maintain
smartengine_memtable_size
smartengine_min_write_buffer_number_to_merge
smartengine_mutex_backtrace_threshold_ns
smartengine_parallel_flush_log
smartengine_parallel_read_threads
smartengine_parallel_recovery_thread_num
smartengine_parallel_wal_recovery
smartengine_pause_background_work
smartengine_persistent_cache_dir
smartengine_persistent_cache_mode
smartengine_persistent_cache_size
smartengine_purge_invalid_subtable_bg
smartengine_query_trace_print_slow
smartengine_query_trace_sum
smartengine_query_trace_threshold_time
smartengine_rate_limiter_bytes_per_sec
smartengine_reset_pending_shrink
smartengine_row_cache_size
smartengine_scan_add_blocks_limit
smartengine_shrink_allocate_interval
smartengine_shrink_table_space
smartengine_sort_buffer_size
smartengine_stats_dump_period_sec
smartengine_strict_collation_check
smartengine_strict_collation_exceptions
smartengine_table_cache_numshardbits
smartengine_table_cache_size
smartengine_total_max_shrink_extent_count
smartengine_total_memtable_size
smartengine_total_wal_size
smartengine_unsafe_for_binlog
smartengine_wal_dir
smartengine_wal_recovery_mode
smartengine_write_disable_wal
snapshot_archive
snapshot_archive_dir
snapshot_archive_expire_auto_purge
snapshot_archive_expire_seconds
snapshot_archive_innodb_tar_mode
snapshot_archive_on_objectstore
snapshot_archive_period
snapshot_archive_smartengine_backup_checkpoint
snapshot_archive_smartengine_tar_mode
table_on_objectstore
wesql_version

New Status

Com_show_consensuslogs
Com_raft_replication_start
Com_raft_replication_stop
Com_native_admin_proc
Com_native_trans_proc
Com_show_consensuslog_events
Smartengine_block_cache_miss
Smartengine_block_cache_hit
Smartengine_block_cache_add
Smartengine_block_cache_index_miss
Smartengine_block_cache_index_hit
Smartengine_block_cache_filter_miss
Smartengine_block_cache_filter_hit
Smartengine_block_cache_data_miss
Smartengine_block_cache_data_hit
Smartengine_row_cache_add
Smartengine_row_cache_hit
Smartengine_row_cache_miss
Smartengine_memtable_hit
Smartengine_memtable_miss
Smartengine_number_keys_written
Smartengine_number_keys_read
Smartengine_number_keys_updated
Smartengine_bytes_written
Smartengine_bytes_read
Smartengine_block_cachecompressed_miss
Smartengine_block_cachecompressed_hit
Smartengine_wal_synced
Smartengine_wal_bytes
Smartengine_write_self
Smartengine_write_other
Smartengine_write_wal
Smartengine_number_superversion_acquires
Smartengine_number_superversion_releases
Smartengine_number_superversion_cleanups
Smartengine_number_block_not_compressed
Smartengine_snapshot_conflict_errors
Smartengine_wal_group_syncs
Smartengine_rows_deleted
Smartengine_rows_inserted
Smartengine_rows_updated
Smartengine_rows_read
Smartengine_system_rows_deleted
Smartengine_system_rows_inserted
Smartengine_system_rows_updated
Smartengine_system_rows_read
Smartengine_max_level0_layers
Smartengine_max_imm_numbers
Smartengine_max_level0_fragmentation_rate
Smartengine_max_level1_fragmentation_rate
Smartengine_max_level2_fragmentation_rate
Smartengine_max_level0_delete_percent
Smartengine_max_level1_delete_percent
Smartengine_max_level2_delete_percent
Smartengine_all_flush_megabytes
Smartengine_all_compaction_megabytes
Smartengine_top1_subtable_size
Smartengine_top2_subtable_size
Smartengine_top3_subtable_size
Smartengine_top1_mod_mem_info
Smartengine_top2_mod_mem_info
Smartengine_top3_mod_mem_info
Smartengine_global_external_fragmentation_rate
Smartengine_write_transaction_count
Smartengine_pipeline_group_count
Smartengine_pipeline_group_wait_timeout_count
Smartengine_pipeline_copy_log_size
Smartengine_pipeline_copy_log_count
Smartengine_pipeline_flush_log_size
Smartengine_pipeline_flush_log_count
Smartengine_pipeline_flush_log_sync_count
Smartengine_pipeline_flush_log_not_sync_count

Managing SQL Drift: Ensuring Stability in Database Transitions

SQL drift is a significant challenge that occurs when SQL statements from an existing system produce unexpected results after migration to a new environment or system. These issues manifest in several critical ways: SQL statements may generate new execution errors, experience significant performance degradation, or yield differences in data integrity. Such challenges extend beyond simple compatibility issues, stemming from variations in database engines, optimization strategies, and SQL implementations. SQL drift represents a fundamental shift in how SQL behaves across different platforms and versions. Whether during on-premises to cloud migrations, transitions to managed services, database vendor switches, or even routine version upgrades, SQL drift presents a critical consideration for data-driven applications.

SQL drift frequently occurs during:

  • On-premises to cloud migrations
  • Cloud to managed service transitions
  • Cross-product migrations (e.g., switching database vendors)
  • Database version upgrades
  • Platform modernization efforts

The implications of SQL drift can be significant, leading to application instability, increased operational costs, and delayed migration timelines. The impact often extends to compromised data quality and results in a degraded user experience as systems become less reliable and responsive. Successfully managing SQL drift involves four key stages:

  1. Identification
  2. Prioritization
  3. Correction
  4. Validation

Identification is the critical first step in managing SQL drift, focusing on systematically discovering potential issues. This phase involves detecting SQL statements that may behave differently in the new environment, analyzing syntax compatibility across platforms, establishing performance baselines, and validating data outputs to ensure consistency.

Prioritization involves evaluating SQL drift issues based on business impact, risk assessment, resource allocation, and migration scheduling to determine the optimal order for resolution.

Correction addresses SQL drift through code remediation, performance optimization, syntax updates, and developing alternative solutions when necessary.

Validation confirms SQL drift corrections through comprehensive testing, performance verification against established baselines, and data integrity checks to ensure the corrected SQL maintains its intended functionality.

An effective way to demonstrate the impact of SQL drift is by using a sample collection of SQL statements executed across different versions of MySQL. The End of Life (EOL) for MySQL 5.7, coupled with AWS RDS and AWS RDS Aurora beginning extended support in 2024, has increased costs for organizations that are not proactive in managing database migrations. This situation is particularly common in development-focused teams that lack dedicated architecture and operations resources.

A MySQL demonstration of SQL Drift

Using a subset of SQL statements executed in MySQL 5.7 and subsequent MySQL versions 8.0, 8.4, 9.0, and 9.1,Next BaseLine can examine the impact of SQL drift. This output shows the changing state of errors, deprecations, warnings and notices for the 42 example SQL statements.

Example Output from Next BaseLine

In MySQL 5.7, the use of the keyword SQL_NO_CACHE in an SQL statement presents as a deprecated warning.

17 Deprecations
ID: 5, Hash: f31f2e99b2
  SQL: "SELECT SQL_NO_CACHE 1;"
  Deprecation: (1681) 'SQL_NO_CACHE' is deprecated and will be removed in a future release.

In MySQL 8.0, the MySQL Query Cache is removed, however the use of SQL_NO_CACHE in SQL statements is still valid. Even in the next GA version, 8.4, this SQL keyword is still on the deprecated list, and it continues to deprecated in the current 9.1 innovation release.

A different example of deprecated functions are ENCRYPT and DES_ENCRYPT.

ID: 17, Hash: 947fcef53a
  SQL: "SELECT ENCRYPT('BaseLine',1);"
  Deprecation: (1287) 'ENCRYPT' is deprecated and will be removed in a future release. Please use AES_ENCRYPT instead
ID: 18, Hash: 364c0ffbf4
  SQL: "SELECT DES_ENCRYPT('BaseLine');"
  Deprecation: (1287) 'DES_ENCRYPT' is deprecated and will be removed in a future release. Please use AES_ENCRYPT instead

In MySQL 8.0, these SQL statements produce a hard error. These actually present as internal functions that are not present in the schema used rather than a “FUNCTION does not exist”. (More on this later).

ID: 17, Hash: 947fcef53a
  SQL: "SELECT ENCRYPT('BaseLine',1);"
  Error 1370 (42000): execute command denied to user 'nextbaseline'@'%' for routine 'airport.ENCRYPT'
ID: 18, Hash: 364c0ffbf4
  SQL: "SELECT DES_ENCRYPT('BaseLine');"
  Error 1370 (42000): execute command denied to user 'nextbaseline'@'%' for routine 'airport.DES_ENCRYPT'

Some example GIS SQL statements that in MySQL 5.7 present as deprecated, however they each are a different error number.

ID: 19, Hash: f319748e0c
  SQL: "SELECT CONTAINS(ST_GeomFromText('POLYGON((0 0, 0 10, 10 10, 10 0, 0 0))'), ST_GeomFromText('POINT(5 5)'));"
  Deprecation: (1287) 'CONTAINS' is deprecated and will be removed in a future release. Please use MBRCONTAINS instead
ID: 20, Hash: d686267b19
  SQL: "SELECT ST_GeomFromWKB(Point(0, 0));"
  Deprecation: (3195) st_geometryfromwkb(geometry) is deprecated and will be replaced by st_srid(geometry, 0) in a future version. Use st_geometryfromwkb(st_aswkb(geometry), 0) instead.

In MySQL 8.0+, these two deprecated statements produce different error messages.

ID: 19, Hash: f319748e0c
  SQL: "SELECT CONTAINS(ST_GeomFromText('POLYGON((0 0, 0 10, 10 10, 10 0, 0 0))'), ST_GeomFromText('POINT(5 5)'));"
  Error 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near '(ST_GeomFromText('POLYGON((0 0, 0 10, 10 10, 10 0, 0 0))'), ST_GeomFromText('POI' at line 1
ID: 20, Hash: d686267b19
  SQL: "SELECT ST_GeomFromWKB(Point(0, 0));"
  Error 3037 (22023): Invalid GIS data provided to function st_geomfromwkb.

Migrating a WordPress site

A more realistic example would involve taking production workload, such as WordPress running on a self-hosted MySQL 5.7 server, and assessing the potential impact of switching to MySQL 8.0 without upgrading the application (not a recommended approach). We have collected representative Production SQL statements for this WordPress setup, referred to as a BaseLine

After collecting SQL traffic and testing this workload against a MySQL 5.7 environment, previously unnoticed SQL warnings were highlighted for the team.

When executed against an upgraded MySQL 8.0 instance, problematic SQL statements were immediately identified. For a larger, more complex product, this process would help prioritize where resources are most needed.

A modern cloud database implementation

Finally, let’s consider TiDB from PingCap as an example of validating your application with a cloud implementation. Using the same small set of 42 SQL statements, TiDB has taken a proactive approach by entirely eliminating warnings in their MySQL protocol. In TiDB, SQL statements are now either valid SQL syntax or produce a hard error.

What was a deprecation for ENCRYPT is now a hard error. Also, a more correct error message is provided ‘FUNCTION does not exist’.

ID: 17, Hash: 947fcef53a
  SQL: "SELECT ENCRYPT('BaseLine',1);"
  Error 1305 (42000): FUNCTION ENCRYPT does not exist
ID: 18, Hash: 364c0ffbf4
  SQL: "SELECT DES_ENCRYPT('BaseLine');"
  Error 1305 (42000): FUNCTION DES_ENCRYPT does not exist

In MySQL 5.7, ENCODE was deprecated and in MySQL 8.0+ it was removed. In TiDB, it is a valid function.

TiDB also produces some interesting artifacts in error messages for SQL statements not seen with MySQL. An example is Error 1235 ... has only noop implementation in tidb now .... This syntax however shows that a setting can change the status of these SQL statements.

ID: 14, Hash: dbcb4b05a2
  SQL: "SELECT table_name, count(*) FROM information_schema.tables GROUP BY table_name ASC;"
  Error 1235 (42000): function GROUP BY expr ASC|DESC has only noop implementation in tidb now, use tidb_enable_noop_functions to enable these functions
...
ID: 26, Hash: 7369c77d51
  SQL: "SELECT SQL_CALC_FOUND_ROWS * FROM information_schema.schemata;"
  Error 1235 (42000): function SQL_CALC_FOUND_ROWS has only noop implementation in tidb now, use tidb_enable_noop_functions to enable these functions

Even during development, an interesting and unintended bug in early testing, resulted in an interesting error using TiDB.

ID: 31, Hash: 9cae50cbfc
  SQL: "SELECT DATE('2024-01-01   10:00:00'); /* Example of bad data causing warning */SELECT 'abc' AS full;"
  Error 8130 (HY000): client has multi-statement capability disabled. Run SET GLOBAL tidb_multi_statement_mode='ON' after you understand the security risk

Conclusion

Next BaseLine is now available in limited beta. Eliminate the uncertainty around “Will the migration work?” by performing an independent risk assessment of your product in a migrated database environment before committing to ad-hoc engineering efforts. If you’re interested in seeing a demo with your own SQL workload, you can register here.

Next BaseLine currently supports MySQL, PostgreSQL, Oracle, and SQL Server RDBMS products, covering both self-hosted and cloud-managed implementations across AWS, GCP, Azure, and Alibaba. It supports multiple MySQL- and PostgreSQL-compatible databases, including TiDB, SingleStore, Neon Serverless, Nile, ElephantSQL, TimeScale, and more. Additional compatibility is available for Snowflake, ClickHouse, and DuckDB.

Database testing for all version changes (including minor versions)

We know that SQL statement compatibility can change with major database version upgrades and that you should adequately test for them. But what about minor version upgrades?

It is dangerous to assume that your existing SQL statements work with a minor update, especially when using an augmented version of an open-source database such as a cloud provider that may not be as transparent about all changes.

While I have always found reading the release notes an important step in architectural principles over the decades, many organizations skip over this principle and get caught off guard when there are no dedicated DBAs and architects in the engineering workforce.

Real-world examples of minor version upgrade issues

Here are two real-world situations common in the AWS RDS ecosystem using MySQL.

  1. You are an organization that uses RDS Aurora MySQL for its production systems, and you upgrade one minor version at a time. A diligent approach is to be one minor version behind unless a known bug is fixed in a newer version you depend on.
  2. You are an organization that, to save costs with a comprehensive engineering team, uses AWS RDS MySQL (not Aurora) for developers and some testing environments.

I’ve simplified a real-world example to a simple SQL statement and combined these two separate use cases into one simulated situation for demonstration purposes.

mysql> SELECT content_type FROM reserved2;
Empty set (0.00 sec)

mysql> SELECT VERSION(), @@aurora_version;
+-----------+------------------+
| VERSION() | @@aurora_version |
+-----------+------------------+
| 8.0.28    | 3.04.2           |
+-----------+------------------+

mysql> SELECT VERSION();
+-----------+
| VERSION() |
+-----------+
| 8.0.34    |
+-----------+
1 row in set (0.00 sec)

This is a simple enough query, this runs in AWS RDS Aurora MySQL 3.04.02 (which is the present Aurora MySQL long-term support (LTS) release). This is based on MySQL 8.0.28 which is FWIW not a supported AWS RDS MySQL version anymore, the minimum is now 8.0.32 (Supported MySQL minor versions on Amazon RDS).

It runs in AWS RDS MySQL 8.0.34 which is for example what version your developer setup is.

An AWS RDS MySQL Aurora minor version upgrade

You decide to upgrade from Aurora 3.04.x/3.05.x to 3.06.x. This Aurora version is actually based on MySQL 8.0.34 (the version you just tested in RDS). Without adequate due diligence you roll out to production only to find after the fact that this SQL statement (realize this is one simplified example for demonstrate purposes) now breaks for no apparent reason.

mysql> select content_type from reserved2;
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'content_type from reserved2' at line 1

mysql> SELECT VERSION(), @@aurora_version;
+-----------+------------------+
| VERSION() | @@aurora_version |
+-----------+------------------+
| 8.0.34    | 3.06.0           |
+-----------+------------------+

Now, you need to investigate the problem, which can take hours, even days of resource time, and a lot of shaking heads to realize it has nothing to do with your application code but to do with the minor version upgrade. Which you simply cannot roll back. See Risks from auto upgrades with managed database services for some interesting facts.

Wait, what just happened?

If you performed this upgrade to the latest AWS RDS Aurora MySQL 3.06.0 version sometime after the release on 3/7/24 and before 6/4/24, a 3-month period, you are left with one choice. You have to make application code changes to address the breakage.

How many man-hours/man-days does this take? If you upgraded to this version in the past two weeks, technically you have a second choice. You can go to the most current version, 3.07.0, but you have already spent time in testing and deploying 3.06.0, which you need to re-test, then rollout in non-production accounts and then rollout to production. How many man-days of work is this?

It may be hard to justify the cost of automated testing until you uncover a situation like this one; however, it can easily be avoided in the future.

So why did this happen?

Lets look deeper are the fine-print

RDS Aurora MySQL 3.06.0

Aurora MySQL version 3.06.0 supports Amazon Bedrock integration and introduces the new reserved keywords accept, aws_bedrock_invoke_model, aws_sagemaker_invoke_endpoint, content_type, and timeout_ms. Check the object definitions for the usage of the new reserved keywords before upgrading to version 3.06.0. To mitigate the conflict with the new reserved keywords, quote the reserved keywords used in the object definitions. For more information on the Amazon Bedrock integration and handling the reserved keywords, see What is Amazon Bedrock? in the Amazon Aurora User Guide. For additional information, see Keywords and Reserved Words, The INFORMATION_SCHEMA KEYWORDS Table, and Schema Object Names in the MySQL documentation.

From AWS RDS Aurora MySQL 3.06.0 release notes (3/7/24).

While less likely you would name a column aws_bedrock_invoke_model, column names of content_type and timeout_ms are common words.

RDS Aurora MySQL 3.07.0

Aurora MySQL version 3.06.0 added support for Amazon Bedrock integration. As part of this, new reserved keywords (accept, aws_bedrock_invoke_model, aws_sagemaker_invoke_endpoint, content_type, and timeout_ms) were added. In Aurora MySQL version 3.07.0, these keywords have been changed to nonreserved keywords, which are permitted as identifiers without quoting. For more information on how MySQL handles reserved and nonreserved keywords, see Keywords and reserved words in the MySQL documentation.

From AWS RDS Aurora MySQL 3.07.0 release notes (6/4/24). Clearly someone at AWS saw the breaking changes and it was reverted. While it’s possible many customers may not need to catch this situation, this is one specific use case.

Conclusion

The moral of the database story here is Be Prepared.

You should always be prepared for future breaking compatibility. You should test with a regular software upgrade cadence and leverage automation as much as possible.

Next BaseLine is a software product that automates testing for many use cases, including this simple SQL compatibility issue. By adding to your CI/CD pipeline can help identify and risk in all SQL database access, including new engineering software releases or infrastructure updates. This product can be implemented in a few hours, and cost significantly less than the large amount of time lost with this one realistic situation.

Next BaseLine - Helping to create a better and faster next version of your data-driven product

Footnote

This example was not uncovered from a customer situation. It was uncovered and used as a demonstration because I read the release notes.

Test Case


SELECT VERSION();
SELECT VERSION(), @@aurora_version; /* No way to comment out the !Aurora example */
CREATE SCHEMA IF NOT EXISTS test;
USE test;
CREATE TABLE reserved1(id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, accept CHAR(1) NOT NULL DEFAULT 'N');
CREATE TABLE reserved2(id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, content_type VARCHAR(10) NULL DEFAULT 'text/plain');
CREATE TABLE reserved3(id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, timeout_ms INT UNSIGNED NOT NULL);
SELECT accept FROM reserved1;
SELECT content_type FROM reserved2;
SELECT timeout_ms FROM reserved3;

Are you patching your AWS RDS MySQL 5.7 EOL databases?

Recently, I noticed a second AWS RDS MySQL 5.7 version available 5.7.44-rds.20240408. Curious what this was as 5.7.44 is the only RDS 5.7.x EOL version available, I launched an instance to discount this as errant metadata.

Today I noticed a second version 5.7.44-rds.20240529. I do not run a MySQL 5.7 AWS RDS instance or pay the AWS Extended Support tax, so I would not receive any notices or recommendations that customers may be receiving.

AWS RDS MySQL 5.7 EOL notificationsImage generated by ChatGPT. Mistakes left as a reminder genAI is not there yet for text.

I needed to do some searching before I found a reference here and then this announcement that mentions 5.7.44-RDS.20240408 as a vulnerability fix. This document does not mention the second version however, based on the dates, this was 18 days ago? There is also no whats-new announcement of this second version. With more searching I also came across Extended Support Version Standards which is not linked from the extended support page that describes this new format.

Are AWS customers being informed they need to continue with a minor version upgrade cadence as you would normally perform? Is it now more important because only more severe vulnerabilities will get backported? The CVE-2024-20963 does only mention MySQL 8.0 and above, but as Oracle has officially marked 5.7 as EOL. This does align with the AWS Extended Support commitment to keep MySQL 5.7.

If you are a customer that has auto-minor upgrades enabled for MySQL 5.7 be aware of the risks from auto upgrades with managed database services.

If you are running AWS RDS PostgreSQL 11 (11.22), the same need applies. There are also version updates. These
Postgres docs also show extension fixes for 20240529 but no mention of a vulnerability. This may be the trigger for the same named RDS MySQL version and there are no actual modifications?

Why are you still running MySQL 5.7?

Next BaseLine identifies and categorizes the risks for SQL migration from MySQL 5.7 to MySQL 8.0 and can accelerate moving off this EOL software version. Stop paying the AWS Extended Support Tax. Get started at https://app.kanangra.io/.

Current AWS RDS MySQL versions

$ aws rds describe-db-engine-versions --engine mysql
{
    "DBEngineVersions": [
        {
            "Engine": "mysql",
            "Status": "available",
            "DBParameterGroupFamily": "mysql5.7",
            "SupportsLogExportsToCloudwatchLogs": true,
            "SupportsReadReplica": true,
            "DBEngineDescription": "MySQL Community Edition",
            "SupportedFeatureNames": [],
            "SupportsGlobalDatabases": false,
            "SupportsParallelQuery": false,
            "EngineVersion": "5.7.44",
            "DBEngineVersionDescription": "MySQL 5.7.44",
            "ExportableLogTypes": [
                "audit",
                "error",
                "general",
                "slowquery"
            ],
            "ValidUpgradeTarget": [
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": false,
                    "AutoUpgrade": false,
                    "Description": "MySQL 5.7.44-rds.20240408",
                    "EngineVersion": "5.7.44-rds.20240408"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": false,
                    "AutoUpgrade": false,
                    "Description": "MySQL 5.7.44-rds.20240529",
                    "EngineVersion": "5.7.44-rds.20240529"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": true,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.28",
                    "EngineVersion": "8.0.28"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": true,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.32",
                    "EngineVersion": "8.0.32"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": true,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.33",
                    "EngineVersion": "8.0.33"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": true,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.34",
                    "EngineVersion": "8.0.34"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": true,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.35",
                    "EngineVersion": "8.0.35"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": true,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.36",
                    "EngineVersion": "8.0.36"
                }
            ]
        },
        {
            "Engine": "mysql",
            "Status": "available",
            "DBParameterGroupFamily": "mysql5.7",
            "SupportsLogExportsToCloudwatchLogs": true,
            "SupportsReadReplica": true,
            "DBEngineDescription": "MySQL Community Edition",
            "SupportedFeatureNames": [],
            "SupportsGlobalDatabases": false,
            "SupportsParallelQuery": false,
            "EngineVersion": "5.7.44-rds.20240408",
            "DBEngineVersionDescription": "MySQL 5.7.44-rds.20240408",
            "ExportableLogTypes": [
                "audit",
                "error",
                "general",
                "slowquery"
            ],
            "ValidUpgradeTarget": [
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": false,
                    "AutoUpgrade": false,
                    "Description": "MySQL 5.7.44-rds.20240529",
                    "EngineVersion": "5.7.44-rds.20240529"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": true,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.28",
                    "EngineVersion": "8.0.28"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": true,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.32",
                    "EngineVersion": "8.0.32"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": true,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.33",
                    "EngineVersion": "8.0.33"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": true,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.34",
                    "EngineVersion": "8.0.34"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": true,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.35",
                    "EngineVersion": "8.0.35"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": true,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.36",
                    "EngineVersion": "8.0.36"
                }
            ]
        },
        {
            "Engine": "mysql",
            "Status": "available",
            "DBParameterGroupFamily": "mysql5.7",
            "SupportsLogExportsToCloudwatchLogs": true,
            "SupportsReadReplica": true,
            "DBEngineDescription": "MySQL Community Edition",
            "SupportedFeatureNames": [],
            "SupportsGlobalDatabases": false,
            "SupportsParallelQuery": false,
            "EngineVersion": "5.7.44-rds.20240529",
            "DBEngineVersionDescription": "MySQL 5.7.44-rds.20240529",
            "ExportableLogTypes": [
                "audit",
                "error",
                "general",
                "slowquery"
            ],
            "ValidUpgradeTarget": [
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": true,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.28",
                    "EngineVersion": "8.0.28"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": true,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.32",
                    "EngineVersion": "8.0.32"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": true,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.33",
                    "EngineVersion": "8.0.33"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": true,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.34",
                    "EngineVersion": "8.0.34"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": true,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.35",
                    "EngineVersion": "8.0.35"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": true,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.36",
                    "EngineVersion": "8.0.36"
                }
            ]
        },
        {
            "Engine": "mysql",
            "Status": "available",
            "DBParameterGroupFamily": "mysql8.0",
            "SupportsLogExportsToCloudwatchLogs": true,
            "SupportsReadReplica": true,
            "DBEngineDescription": "MySQL Community Edition",
            "SupportedFeatureNames": [],
            "SupportsGlobalDatabases": false,
            "SupportsParallelQuery": false,
            "EngineVersion": "8.0.32",
            "DBEngineVersionDescription": "MySQL 8.0.32",
            "ExportableLogTypes": [
                "audit",
                "error",
                "general",
                "slowquery"
            ],
            "ValidUpgradeTarget": [
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": false,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.33",
                    "EngineVersion": "8.0.33"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": false,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.34",
                    "EngineVersion": "8.0.34"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": false,
                    "AutoUpgrade": true,
                    "Description": "MySQL 8.0.35",
                    "EngineVersion": "8.0.35"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": false,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.36",
                    "EngineVersion": "8.0.36"
                }
            ]
        },
        {
            "Engine": "mysql",
            "Status": "available",
            "DBParameterGroupFamily": "mysql8.0",
            "SupportsLogExportsToCloudwatchLogs": true,
            "SupportsReadReplica": true,
            "DBEngineDescription": "MySQL Community Edition",
            "SupportedFeatureNames": [],
            "SupportsGlobalDatabases": false,
            "SupportsParallelQuery": false,
            "EngineVersion": "8.0.33",
            "DBEngineVersionDescription": "MySQL 8.0.33",
            "ExportableLogTypes": [
                "audit",
                "error",
                "general",
                "slowquery"
            ],
            "ValidUpgradeTarget": [
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": false,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.34",
                    "EngineVersion": "8.0.34"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": false,
                    "AutoUpgrade": true,
                    "Description": "MySQL 8.0.35",
                    "EngineVersion": "8.0.35"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": false,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.36",
                    "EngineVersion": "8.0.36"
                }
            ]
        },
        {
            "Engine": "mysql",
            "Status": "available",
            "DBParameterGroupFamily": "mysql8.0",
            "SupportsLogExportsToCloudwatchLogs": true,
            "SupportsReadReplica": true,
            "DBEngineDescription": "MySQL Community Edition",
            "SupportedFeatureNames": [],
            "SupportsGlobalDatabases": false,
            "SupportsParallelQuery": false,
            "EngineVersion": "8.0.34",
            "DBEngineVersionDescription": "MySQL 8.0.34",
            "ExportableLogTypes": [
                "audit",
                "error",
                "general",
                "slowquery"
            ],
            "ValidUpgradeTarget": [
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": false,
                    "AutoUpgrade": true,
                    "Description": "MySQL 8.0.35",
                    "EngineVersion": "8.0.35"
                },
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": false,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.36",
                    "EngineVersion": "8.0.36"
                }
            ]
        },
        {
            "Engine": "mysql",
            "Status": "available",
            "DBParameterGroupFamily": "mysql8.0",
            "SupportsLogExportsToCloudwatchLogs": true,
            "SupportsReadReplica": true,
            "DBEngineDescription": "MySQL Community Edition",
            "SupportedFeatureNames": [],
            "SupportsGlobalDatabases": false,
            "SupportsParallelQuery": false,
            "EngineVersion": "8.0.35",
            "DBEngineVersionDescription": "MySQL 8.0.35",
            "ExportableLogTypes": [
                "audit",
                "error",
                "general",
                "slowquery"
            ],
            "ValidUpgradeTarget": [
                {
                    "Engine": "mysql",
                    "IsMajorVersionUpgrade": false,
                    "AutoUpgrade": false,
                    "Description": "MySQL 8.0.36",
                    "EngineVersion": "8.0.36"
                }
            ]
        },
        {
            "Engine": "mysql",
            "Status": "available",
            "DBParameterGroupFamily": "mysql8.0",
            "SupportsLogExportsToCloudwatchLogs": true,
            "SupportsReadReplica": true,
            "DBEngineDescription": "MySQL Community Edition",
            "SupportedFeatureNames": [],
            "SupportsGlobalDatabases": false,
            "SupportsParallelQuery": false,
            "EngineVersion": "8.0.36",
            "DBEngineVersionDescription": "MySQL 8.0.36",
            "ExportableLogTypes": [
                "audit",
                "error",
                "general",
                "slowquery"
            ],
            "ValidUpgradeTarget": []
        }
    ]
}

The curse of MySQL warnings

MySQL warnings are an anti-pattern when it comes to maintaining data integrity. When the information retrieved from a database does not match what was entered, and this is not identified immediately, this can be permanently lost.

MySQL by default for several decades until the most recent versions enabled you to insert incorrect data, or insert data that was then truncated, or other patterns that resulted in failed data integrity. Very few applications considered handling warnings as errors, and there is a generation of software products that have never informed the developers that warnings were occurring.

The most simplest example is:

CREATE SCHEMA IF NOT EXISTS warnings;
USE warnings;

CREATE TABLE short_name(
  id INT UNSIGNED NOT NULL AUTO_INCREMENT,
  name VARCHAR(20) NOT NULL,
  PRIMARY KEY(id)
);

INSERT INTO short_name (name) VALUES ('This name is too long and will get truncated');
ERROR 1406 (22001): Data too long for column 'name' at row 1

This is what you expect would happen. In many, many applications IT DOES NOT.

For almost 20 years the default setting was to support possible data corruption

If you used an older version without setting up a more strict SQL_MODE from the default you end up with.

INSERT INTO short_name (name) VALUES ('This Name is too long and will get truncated');
Query OK, 1 row affected, 1 warning (0.00 sec)

SELECT * FROM short_name;
+----+----------------------+
| id | name                 |
+----+----------------------+
|  1 | This name is too lon |
+----+----------------------+
1 row in set (0.00 sec)

Only if you run SHOW WARNINGS and after the actual SQL statement would you know? There is no other way to find this information in any logs. There is no way to

mysql> SHOW WARNINGS;
+---------+------+-------------------------------------------+
| Level   | Code | Message                                   |
+---------+------+-------------------------------------------+
| Warning | 1265 | Data truncated for column 'name' at row 1 |
+---------+------+-------------------------------------------+
1 row in set (0.00 sec)

Numerous other examples can shock a customer when, after some time, expected data in a production is lost and unretrievable.

If you came from a more strict RDBMS background, or you tuned your MySQL installation or uncovered this and many other poor defaults, you would have improved your data integrity with and improved SQL_MODE.

So MySQL warnings are bad? No, they are ideal when used appropriately. However, the next critical dilemma occurs.

Warnings are valuable when used to identify important characteristics of an SQL statement that a developer or database administrator should be aware of. However, the only way to retrieve these warnings is from the application making the connection to the database at each statement, and generally, these warnings are just lost.

Here are some examples of warnings that are important for the engineering team that define criteria such as deprecation notices, which are important for production database upgrades.

SELECT JSON_MERGE('["a"]','["b"]'); 
Warning (Code 1287): 'JSON_MERGE' is deprecated and will be removed in a future release. Please use JSON_MERGE_PRESERVE/JSON_MERGE_PATCH instead

SELECT ST_GeomFromWKB(Point(0, 0));
Warning: (3195) st_geometryfromwkb(geometry) is deprecated and will be replaced by st_srid(geometry, 0) in a future version. Use st_geometryfromwkb(st_aswkb(geometry), 0) instead.

SELECT DATE('2024-01-01 10:00:00') 
Warning (Code 4096): Delimiter ' ' in position 11 in datetime value '2024-01-01 10:00:00' at row 1 is superfluous and is deprecated. Please remove.

SELECT BINARY 'a' = 'A' 
Warning (Code 1287): 'BINARY expr' is deprecated and will be removed in a future release. Please use CAST instead 

You definitely want to know about these, collect them (hard), add them to your backlog, and don’t leave it until its too late in the I can’t upgrade my database to have to address.

If you want to know about these, collect them (hard), add them to your backlog, and don’t leave it until it’s too late for a critical last-minute upgrade to my database to have to address.

There are also warnings that should be collected and used for performance verification, which apply to running systems. I wanted to show one specific example uncovered during testing of a MySQL upgrade to version 8.0.

Warning (Code 3170): Memory capacity of 8388608 bytes for 'range_optimizer_max_mem_size' exceeded. Range optimization was not done for this query.

In fact, this warning occurs in MySQL 5.7, but the customer never knew because they did not look at the warnings. How many other SQL statements in your application produce warnings now? How can you find this out?

It was rather easy to create a reproducible test case but what now?

  • Do you set range_optimizer_max_mem_size=0
  • Do you set to the value you need, which you can identify with SELECT * FROM performance_schema.memory_summary_by_thread_by_event_name WHERE thread_id=PS_CURRENT_THREAD_ID() AND event_name='memory/sql/test_quick_select'\G
  • Do you need to modify your optimizer_switch settings?
  • Do you try something else?
  • Do you refactor your application?
  • Do you just leave it as is?

When you want to consider several different options, which one works best for this query? What about the impact on your entire production workload? Knowing statistically which is the best choice for your full workload and under various conditions is the optimal output, but how?

Next BaseLine was built to perform experiments comparing changes to your data, configuration, and infrastructure to validate the next version of your product statistically performs better than your current version across all of your application at different workloads.

Next BaseLine also provides numerous benefits for a major database upgrade, so I’ve focussed on getting these capabilities to customers quicker to save money. It provides the benefit of detecting SQL statements that produce errors in the next MySQL version, enabling you to categorize and prioritize areas of your application that must be corrected. It also captures important information about the performance and quality of the data from your MySQL queries; this also can help in identifying the most critical aspects of your application to invest engineering time and mitigate risk in your database upgrade plan. It can also collect warning messages such as these discussed when considering migrating from MySQL 5.7 to MySQL 8, or it can just find them with your current application.

What is your pain point with MySQL database upgrades? What are you doing right now to help reduce this additional budget spend? Join our private beta program now to find out more.

Next BaseLine

Helping to create a better and faster next version of your data-driven product

Digital Tech Trek Digest [#Issue 2024.12]

Falsehoods programmers believe about time zones

If I told you there was a timezone 30 minutes past the hour, would you believe me? In a small section of Western Australia, there is. However, time zones (TZ) are way more complicated. If you have not missed a meeting due to a TZ mixup, you haven’t worked in a multi-national company or had a meeting in a country with >1 timezone.

I shared this article with several friends, and this response sums it up. “I think documenting failure is as important as celebrating success. Always share what you’ve learned. And adding in humor makes it human.”

PostgreSQL Schema Changes with pg_osc

While Online Schema Change (OSC) has been part of the MySQL ecosystem for decades, evolving from pt-osc (previously MaaKit) to gh-ost and now spirit this is the first time I’ve head of OSC for PostgreSQL. It likely has existed in some form for some time.

Source: LinkedIn

Pricing your product

One key takeaway from the MicroConf Founder-lead Sales event was pricing. “Be transparent and provide a number.” is basically what I noted as the essence. Well, I’m going to track sites that do not offer pricing to evaluate why. My first two entrants are Vanta and CultureAmp. Why is a price not offered? Is it a high-entry point, too complex to articulate easily, a way to charge the customer what they are willing to pay, or perhaps it’s not credit-card worthy but a detailed commitment? As a child, I remember being told that if I had to ask the price when it was not visible, I could not afford it. Does this apply to SaaS?

Postgres is eating the database world

The Extension is a fundamental growth mindset for PostgreSQL. Combined with the protocol for TCP communications, a robust and growing ecosystem can be seen with PostgreSQL. Add the wisdom of moving to an annual release cadence, and these factors would seem to highlight that PostgreSQL is quickly outpacing MySQL in the RDBMS open-source ecosystem. This article written by the creators of Pigsty, and other players including Tembo and Aiven are re-enforcing the narrative.

Source: LinkedIn

Why should I not upload images of code/data/errors?

This post is a comment by Bill Karwin to Stop with the Video Documentation by Jon Sustar. This post is just the recipe that should be enshrined in the ticket support system of any company when any user tries to upload an image. When a text command is provided, and the response is not provided back in the text, it’s hugely inefficient.

Source: LinkedIn

About “Digital Tech Trek Digest”

Most days, I take some time early in the morning to scan my inbox newsletters, the news, LinkedIn, or other sources to read something new about professional and personal topics of interest. I turn what I read into actionable notes in a short, committed time window, summarizing what I learned, what I should learn and use, or what is of random interest. And thus my Digital Tech Trek.

Some of my regular sources include TLDR, Forbes Daily, ThoughWorks Podcasts, Daily Dose of Data Science and BoringCashCow. Also Scientific American Technology, Fareed’s Global Briefing, Software Design: Tidy First? by Kent Beck, Last Week in AWS, Micro Newsletter to name a few.

New Additions

I have added Building a boring, but wildly profitable, online business portfolio as a new source to review.

Digital Tech Trek Digest [#Issue 2024.09]

As an entrepreneur, pricing is an important consideration in any evaluation, development, and customer testing. In How To Price A SaaS Product, we see different pricing strategies, cost-based pricing, competitor-based pricing, penetration pricing, value-based pricing, freemium pricing. None of these match what I am ultimately considering: consumption-based pricing. Pricing is critical to define the value proposition statement and determine the range of the total lifetime value (TLV). It can vary greatly for B2C, B2B, and B2B enterprise offerings. If we look at YCombinator https://www.ycombinator.com/library/6h-startup-pricing-101 a basic principle is determining the gap between price and cost. That is your margin and your incentive to sell, and you work with either cost-plus or value-based pricing. Starting with founder-led sales is difficult as you do not have the luxury of a dedicated and experienced head of sales to work on different models and guide a technical founder, even before you enter the minefield of enterprise sales with applicable bids, contract, and compliance complexities. I am drawn back to “Consumption-based pricing is a pricing model that charges customers based on their product or service usage. Consumption-based pricing calculates pricing based on usage volume rather than the number of users and is a popular pricing model for IT services, SaaS, and cloud computing and storage” Cite: Consumption-Based Pricing.

Moving a Billion Postgres Rows on a $100 Budget

I wrote recently about the 1 Billion Row Challenge (1BR). This week, I found this article on the same number with a different title. The objective was not performance; it was cost. PeerDB enables the efficient extraction of data from PostgreSQL into a data warehouse, such as Big Query, ClickHouse or Snowflake. It was interesting to see Arvo as a format used over, for example, Parquet. The product also offers different streaming modes, including log-based (CDC), cursor-based (timestamp or integer), and XMIN-based. I will need to do further research on this new term XMIN-Based.

Test queries against your production database (responsibly)

This post links off to a YouTube video of The Safest Way to Test Postgres Destructive Queries, which provides a basic introduction to branching of the Neon PostgreSQL DBaaS. While the title originally interested me, the example showing the mechanics is like many other product examples in which it is extremely simplistic and not a true representation of “production” size or workload. I see this as a similar concept to AWS RDS Aurora cloning. However, any example should modify the structure of a table, measure the impact of that structure against production queries (note plural), and provide additional metadata rather than just a response time. These are important considerations in my own evaluation of test coverage of data access and the gathering of configuration, data, and infrastructure when running experiments to determine a more optimal data access path or a new functionality requirement. More documentation can be found here on Neon Branching

About “Digital Tech Trek Digest”

Most days, I take some time early in the morning to scan my inbox newsletters, the news, LinkedIn, or other sources to read something new about professional and personal topics of interest. I turn what I read into actionable notes in a short, committed time window, summarizing what I learned, what I should learn and use, or what is of random interest. And thus my Digital Tech Trek.

Some of my regular sources include TLDR, Forbes Daily, ThoughWorks Podcasts, Daily Dose of Data Science and BoringCashCow. Also Scientific American Technology, Fareed’s Global Briefing, Software Design: Tidy First? by Kent Beck, Last Week in AWS, Micro Newsletter to name a few.

Random Wisdom

This week, I was reminded via a very interesting statement that work-life balance and joy in what you do are critically important. You will not find on a tombstone the statement:

“I never worked enough hours.”

Digital Tech Trek Digest [#Issue 2024.08]

The One Billion Row Challenge Shows That Java Can Process a One Billion Rows File in Two Seconds

Well, it’s way under 2 seconds for the 1brc. The published results are in, and if you’re good, you can read 1 billion data points of weather data and analyze it. The final best number, as per the article release, is “00:00.323″. Yes, that answer is in milliseconds “Result (m:s.ms)”. Mind-blowing.

ScyllaDB Summit 2024

Last week, I attended this virtual event. All the presentations can be found online. I had never used the product before, so while some new features like Tablets were not as applicable in understanding the full impact, the DynamoDB performance and cost comparisons were very applicable.

So what is ScyllaDB? It is a distributed NoSQL DBaaS that speaks Cassandra protocol (do large companies still use this?), and it speaks AWS DynamoDB protocol. That is really interesting to me. You can choose a Cloud Hosted offering, or if you’re into managing your setup, you can use the Open Source ScyllaDB version available from GitHub. I started at ScyllaDB University to get a grip on the basics. I have yet to try the local Docker Compose setup.

Thanks also to the team for the swag which I received.

Playing a game with your CI/CD pipeline

My friend Sergey has created a game in GitLab called GitTerra. Drop a few lines into your .gitlab-ci.yml, and each build will give you a generated 3D map of a city based on your commit. I look forward to some of his next steps, leveraging potentially different colors for languages or different building structures for artifacts found in your commit.

We raised 11.6M to build Serverless Postgres for Modern SaaS

Congrats to Gwen and her co-founder for getting seed funding for Nile Serverless Postgres for Modern SaaS. Awesome news for an entrepreneur, and I’m very hopeful for the success of Nile.

The Safest Way to Test Postgres Destructive Queries

While I am a user of ElephantSQL serverless PostgreSQL and Neon, Nile and Xata are just a few that are competing in the space. With multiple other products that also speak PostgreSQL protocol, you can easily trial a small product in an RDBMS in the cloud at no cost. PostgreSQL is definitely outdoing MySQL in this space. You have the extensive set of NoSQL Cloud offerings, SycllaDB I just mentioned, and D1 by CloudFlare I have yet to try this branching feature for your database, sounds interesting and I’ve added to my just as long list of products to try, as books to read. Nit: It’s PostgreSQL, not Postgres.

About “Digital Tech Trek Digest”

I take some time early in the morning to scan my inbox newsletters, the news, LinkedIn, or other sources to read something new covering professional and personal topics of interest. Turning what I read into some actionable notes in a short, committed time window is a summary of what I learned, what I should learn and use, or what is of random interest. And thus my Digital Tech Trek.

Some of my regular sources include TLDR, Forbes Daily, ThoughWorks Podcasts, Daily Dose of Data Science and BoringCashCow. Also Scientific American Technology, Fareed’s Global Briefing, Software Design: Tidy First? by Kent Beck, Last Week in AWS, Micro Newsletter to name a few.

Digital Tech Trek Digest [#Issue 2024.03]

Lessons from going freemium: a decision that broke our business

As an entrepreneur always considering how to produce a sustaining passive revenue, what licensing model to use, and how to acquire and retain customers, the allure of a freemium model is ever present in so many offerings. You may wish to read this article and look at the visualizations provided with the narrative. I found this a useful data storytelling example.

The allure of seeing a new product is the strongest motivator new users have to complete setup. If you make onboarding too easy, they’ll never come back to do the hard task you let them skip.

Read more at Lessons from going freemium: a decision that broke our business Source: TLDR

Newsletters and online content creators

Lenny’s Newsletter from the prior article, listed with over 574,000 subscribers is one of several Substack newsletters I subscribe to. Substack is described as “The subscription network for independent writers and creators”. I have been collecting the number of subscribers from several newsletters I follow, however, there is no way to see that growth over time. Also missing are the price rates over time and the ratio of free to paying subscribers. Random Idea: What is missing is a history of this information. Other stats I’ve noted previously include 66,000 subscribers for Kent Becks Newsletter with 3 subscription plan offerings, 1,250,000 subscribers for the free TLDR (I can remember this years ago being much less) and 65,000 subscribers for the Seattle Data Guy newsletter.

FWIW this post from Lenny’s Newsletter This newsletter is growing up is from 2020.

Golden Kitty Awards 2022

I came across the Golden Kitty Awards, which unfortunately are only current to 2022 (fail on being current). It was interesting to scan the list for innovative ideas. I’ve yet to visit any sites, but I’m always encouraged by what people think of and commit to building, regardless of the motivation or incentive. What counts is an entrepreneur takes an idea and releases a product. 

Source: Random

Streamer JS – Video stream layout manager for OBS Studio and other streaming applications.

I am a new user of Twitch streaming for personal projects.  My good friend Sergey Chernyshev organizer of the large New York Web Performance Group has created Streamer JS as a means to drive more dynamic content in the browser and with common languages of HTML/CSS/Javascript and using OBS more as the streaming only component.  One objective is better version control management of assets/scenes/sources/filters/etc.  It’s interesting that  PouchDB is an eventually consistent distributed datastore in Javascript. Yet another simple data store to review for suitability. 

Source: Word of mouth

The 37th Chaos Communication Congress (37C3) by the Chaos Computer Club

Last month I was introduced to the Chaos Computer Club. This large German-based annual tech conference focuses on security & infrastructure/hacking.  Over 100 talks from the most recent event last week have been posted here.

Source: Word of mouth

About ‘Digital Tech Trek Digest’

Most days I take some time early in the morning to scan my inbox newsletters, the news, LinkedIn, or other sources to read something new covering professional and personal topics of interest. Turning what I read into actionable notes in a short, committed time window summarizes what I learned today, what I should learn and use, or what is of random interest. And thus my Digital Tech Trek.

Some of my regular sources include TLDR, Forbes Daily, ThoughWorks Podcasts, Daily Dose of Data Science and BoringCashCow. Also Scientific American Technology, Fareed’s Global Briefing, Software Design: Tidy First? by Kent Beck to name a few.

Digital Tech Trek Digest [#Issue 2024.02]

Indie Newsletter Tool Generates $15,000 a Month

There are so many different email newsletter sites you could wonder if there is market saturation. MailChimp, Mailgun, ConvertKit, Sendgrid (now part of Twilio it seems), Moosend and Mailersend come to mind.

It seems the space still has plenty of revenue-producing options including buttondown.email reportedly a side gig generating $15k per month. Source: BoringCashCow

When I asked a good friend and author of the Technical SEO Weekly his use of ConvertKit directed me to this Baremetrics Dashboard which is another product to look at sometime.

LLMs and Programming in the first days of 2024

How do use an LLM? If you are still on the fence start getting into the habit of using it more frequently then start. I now use ChatGPT and Claude AI daily, and with a crowded market there are many other emerging technologies to also consider.

I use ChatGPT for coding and image generation with DALL.E. I use Claude more for reviewing large documents that seem to be ideal for producing a summary, or to generate a fictitious movie script from those documents.

I do not like Javascript nor do I wish to actually learn this language however I write it daily via ChatGPT. Javascript is the ever-changing technology of web development and it’s impossible to keep up with the next product, or version of a product you may know. ChatGPT helps me navigate this combined with asking for HTML and TailwindCSS.  However, it’s not perfect, you need to be an experienced engineer who has learned how to write code for many years to ask the right questions and to correct the LLM when it does not produce what you expect. Let’s look at CSS. Now there is flex and grid and it’s hard to keep up with changing features that browsers support. This is where ChatGPT has helped me. I have been using Tailwindcss but it still took an expert friend 30 minutes to help me debug a CSS formatting issue of a future OBS Twitch streaming project to correctly size the content all in a 1920×1080 box. I learned a lot of new features of Google Chrome Developer Tools Inspector I did not know and are probably just the start of expert debugging features.

Until a few months ago I never knew it’s now much easier to read JSON in Javascript.

async function fetchData() {
  try {
    const response = await fetch('data.json');
    const data = await response.json();
    console.log(data);
    return data
  } catch (error) {
    console.error('Error fetching data:', error);
  }
}

let data = await fetchData();

I’d like to remind users that  ChatGPT can make mistakes. Consider checking important information.. Source:  TLDR

ParadeDB (GitHub Repo)

Every day there is another PostgreSQL product to review.  I am a current user of ElephantSQL which I didn’t know existed two months ago. Neon and Tembo are two more PostgreSQL serverless-related products on my product review list.  Now adding ParadeDB as well as reading Thoughts on PostgreSQL in 2024.

About ‘Digital Tech Trek Digest’

Most days I take some time early in the morning to scan my inbox newsletters, the news, LinkedIn, or other sources to read something new covering professional and personal topics of interest. Turning what I read into some actionable notes in a short committed time window is a summary of what I learned today, what I should learn and use, or what is of random interest. And thus my Digital Tech Trek.

Some of my regular sources include TLDR, Forbes Daily, ThoughWorks Podcasts, Daily Dose of Data Science and BoringCashCow to name a few.

Mastering MySQL 5.7 EOL migrations

In a recent podcast on Mastering EOL Migrations: Lessons learned from MySQL 5.7 to 8.0 I discuss with my colleague Adam North not only the technical issues that become a major migration but also key business and management requirements with having a well-articulated strategy that covers:

  • Planning
  • Testing
  • Be Prepared
  • Proactiveness

Having a plan is key to any significant task including data migrations. You should heed the warnings and the deprecations and consider all potential downstream product impacts such as connector upgrades. The plan includes a timeline but also needs to define all the stakeholders both technical and business, the definition of a successful migration, and most importantly the decision tree for a non-successful migration that would include any outage, failback, rollback, or fix-forward requirements.

Test, Test, Test. Leveraging the simple design pattern of read-write splitting (hint: if your application does not support this, it should) you get to test with minimal risk all of your application reads and with real load from 1% to 100%. You can validate all writes but this does not match concurrency, however, you can emulate load testing and using this two-way door strategy, verify and prevent many common problems before the decision point of failover.

Being prepared is assuming your migration will fail, rather than assuming it will succeed. Rehearsal of all steps that are documented and reproducible. Validating that your backup and recovery strategy is still optimal and operational with the new version, preparing supporting staff for availability before, during, and after the migration. There are probably not many technologists that can say, “Well that was a boring, uneventful successful migration”. The question is why not?

Being proactive is just as important. Leaving a large migration to the last minute is procrastination and a cause of unneeded stress during a non-successful migration. The Meltdown/Spectre vulnerabilities are one example of a highly impactful event outside of your control that sidelined entire teams in many companies for months. Does an outage of your cloud provider impact your uptime requirements and force you to delay a last-minute migration due to customer SLA obligations? While being prepared is for the reasons you could think of, being proactive and prepared is for the situations you have not thought of.

Having solid architectural design practices will aid greatly in many critical business requirements of uptime, read-only mode, scale-out, scale-up, and sharding. These design patterns also greatly enhance the likelihood of a successful database migration.

We have also created a Checklist to cover the planning and execution of a migration. Any input is welcome.

You can check out the video podcast on YouTube or listen with your favorite podcast tool.

AWS RDS Aurora wish list

I’ve had this list on a post-it note on my monitor for all of 2022. I figured it was time to write it down, and reuse the space.

In summary, AWS suffers from the same problem that almost every other product does. It sacrifices improved security for backward compatibility of functionality. IMO this is not in the best practices of a data ecosystem that is under constant attack.

  • Storage should be encrypted by default. When you launch an RDS cluster its storage is not encrypted. This goes against their own AWS Well-Architected Framework Section 2 – Security.
  • Plain text passwords. To launch a cluster you must specify a password in plain text on the command line, again not security best practice. At least change this to using a known secret from AWS secrets manager.
  • TLS for administrative accounts should be the only option. The root user should only be REQUIRE SSL (MySQL syntax).
  • Expanding on the AWS secrets manager usage for passwords, there should not need to be lambda code and cloudwatch cron event for rotation, it should just be automatically built in.
  • The awscli has this neat wait command that will block until you can execute the next statement in a series of sequential events to prepare and launch a cluster, but it doesn’t work for create-db-cluster. You have to build in your own manual “wait” until “available” process.
  • In my last position, I was unable to enforce TLS communications to the database from the application. This insecure practice is a more touchy situation, however, there needs to be some way to ensure security best practices over application developer laziness in the future.
  • AWS has internal special flags that only AWS support can set when say you have a bug in a version. Call it a per-client feature flag. However, there is no visibility into what is set, which account, which cluster, etc. Transparency is of value so that the customer knows to get that special flag unset after minor upgrades.
  • When you launch a new RDS Cluster, for example, MySQL 2.x, you get the oldest version, back earlier in the year it was like 2.7.2, even when 2.10.1 was released. AWS should be using a default version when only an engine is specified as a more current version. I would advocate the latest version is not the automatic choice, but it’s better to be more current.
  • the ALTER SYSTEM CRASH functionality is great, but it’s incomplete. You cannot for example crash a global cluster, forcing a region-specific failover. If you have a disaster resiliency plan that is multi-region it’s impossible to actually test it. You can emulate a controlled failover, but this is a different use case to a real failover (aka Dec 2021)
  • Use arn when it’s required not id. This goes back to my earlier point over maximum compatibility over usability, but when a --db-instance-identifier, or --db-instance-identifier requires the value to be the ARN, then the parameter should be specific. IMO –identifier is what you use for that argument, e.g. --db-cluster-identifier. When you specify for example --replication-source-identifier this must be (as per docs) “The Amazon Resource Name (ARN) of the source DB instance or DB cluster if this DB cluster is created as a read replica.” It should then be --replication-source-arn. There are a number of different occurrences of this situation.

SELECT 1

If you have worked with an RDBMS for some time, you will likely have come across the statement SELECT 1.

However, rarely is it correctly explained to engineers what the origin of SELECT 1 is, and why it’s useless and wasteful? A google search is not going to give you the response you would hope, these ranked responses are just as useless as the statement itself.

Bloat

Seeing a SELECT 1 confirms two things. First you are using a generic ORM framework, quote, and second, you have never optimized your SQL traffic patterns.

“Frameworks generally suck.
They CLAIM to improve the speed of development and abstract the need to know SQL.
The REALITY is the undocumented cost to sub-optimal performance, especially with data persistence.”

Connection Pooling

SELECT 1 comes from early implementations of connection pooling.

What is a connection pool? Rather than a new request or call getting a new database connection each time you wanted to return some data, programming languages implemented a cache with a pre-loaded pool of pre-established database connections. The intended goal is to reduce the execution time of an initial expensive operation of getting a new database connection if you were retrieving data from a simple SELECT statement. If intelligent enough (many are not), these pools would include features such as a low watermark, a high watermark, a pruning backoff of idle connections, and an ability to flush all connections.

When your code wanted to access the database to retrieve data, it would first ask the connection pool for an available connection from its pool, mark the connection as in-use and provide that for subsequent consumption.

Here is a simple example of the two queries that would actually be necessary to retrieve one piece of information.

SELECT 1
SELECT email_address, phone, position, active FROM employee where employee_id = ?

Staleness

SELECT 1 was implemented as the most light-weight SQL statement (i.e., minimal parsing, privilege checking, execution) that would validate that your connection was still active and usable. If SELECT 1 failed, i.e. a protocol communication across your network, the connection could be dropped from the connection pool, and a new connection from the pool could be requested. While this may appear harmless, it leads to multiple code in-efficiencies, a topic for a subsequent discussion.

Failed error handling

SELECT 1 was a lazy and flawed means to perform error handling. In reality, every single SQL statement requires adequate error handling, any statement can fail at any time to complete. In the prior example, what happens if the SELECT 1 succeeds but a simple indexed SELECT statement fails? This anti-pattern also generally shows that error handling is inconsistent and highly duplicated rather than at the correct position in the data access path.

By definition, error handling is needed in an abstraction function for all SQL statements, and it needs to handle all types of error handling including the connection no longer valid, connection terminated, timed out, etc.

If you had the right error handling SELECT 1 would then be redundant, and as I stated useless. You simply run the actual SELECT statement and handle any failure accordingly.

High availability

In today’s cloud-first architectures where high availability consists of multiple availability zones and multiple regions where application A can communicate with database B, every unneeded network round-trip in a well-tuned system is wasteful, i.e. it is costing you time to render a result quicker. We all know studies have shown that slow page loads drive users away from your site.

The cost of the cloud

This AWS Latency Monitoring grid by Matt Adorjan really shows you the impact that physics has on your resiliency testing strategy when application A and database B are geographically separated and you just want one piece of information.

Conclusion

The continued appearance of SELECT 1 is a re-enforcement that optimizing for performance is a missing skill for the much larger engineering code-writing workforce that have lost the ability for efficiency. It is also another easy win that becomes an unnecessary battle for Data Architects to ensure your organization provides a better customer experience.

Upcoming Percona Live 2021 Presentations

I am pleased to have been selected to present at Percona Live 2021 May 12-13. My presentations include talks on AWS RDS Aurora and QLDB managed services.

Understanding AWS RDS Aurora Capabilities

The RDS Aurora MySQL/PostgreSQL capabilities of AWS extend the HA capabilities of RDS read replicas and Multi-AZ.

In this presentation we will discuss the different capabilities and HA configurations with RDS Aurora including:

* RDS Cluster single instance
* RDS Cluster multiple instances (writer + 1 or more readers)
* RDS Cluster multi-master
* RDS Global Cluster
* RDS Cluster options for multi-regions

Each option has its relative merits and limitations. Each will depend on your business requirements, global needs and budget.

This presentation will include setup, monitoring and failover evaluations for the attendee with the goal to provide a feature matrix of when/how to consider each option as well as provide some details of the subtle differences Aurora provides.

This presentation is not going to go into the technical details of RDS Aurora’s underlying infrastructure or a feature by feature comparison of AWS RDS to AWS RDS Aurora.

A QLDB Cheatsheet for MySQL Users

Amazons new ledger database (QLDB) is an auditors best friend and lives up to the stated description of “Amazon QLDB can be used to track each and every application data change and maintains a complete and verifiable history of changes over time.”

This presentation will go over what was done to take a MySQL application that provided auditing activity changes for key data, and how it is being migrated to QLDB.

While QLDB does use a SQL-format for DML, and you can perform the traditional INSERT/UPDATE/DELETE/SELECT. The ability to extend these statements to manipulate Amazon Ion data (a superset of JSON) gives you improved data manipulation, and for example the FROM SQL statement.

Get a blow by blow comparison of MySQL structures (multiple tables and lots of columns) and SQL converted into a single QLDB table, with immutable, and cryptographically verifiable transaction log. No more triggers, duplicated tables, extra auditing for abuse of binary log activity.

We also cover the simplicity of using X Protocol and JSON output for data migration, and the complexity of AWS RDS not supporting X Protocol

#WDILTW – What can I run from my AWS Aurora database

When you work with AWS Aurora you have limited admin privileges. There are some different grants for MySQL including SELECT INTO S3 and LOAD FROM S3 that replace the loss of functionality to SELECT INTO OUTFILE and mysqldump/mysqlimport using a delimited format. While I know and use lambda capabilities, I have never executed anything with INVOKE LAMDBA directly from the database.

This week I found out about INVOKE COMPREHEND (had to look that product up), and INVOKE SAGEMAKER (which I used independently). These are machine learning capabilities that enable you to build custom integrations using Comprehend and SageMaker. I did not have any chance to evaluate these capabilities so I am unable to share any use cases or experiences. There are two built-in comprehend functions aws_comprehend_detect_sentiment() and aws_comprehend_detect_sentiment_confidence(), a likely future starting place. Sagemaker is invoked as an extension of a CREATE FUNCTION that provides the ALIAS AWS_SAGEMAKER_INVOKE_ENDPOINT syntax.

Also available are some MySQL status variables including Aurora_ml_logical_response_cnt, Aurora_ml_actual_request_cnt, Aurora_ml_actual_response_cnt, Aurora_ml_cache_hit_cnt, Aurora_ml_single_request_cnt.

Some googling found an interesting simple example, calculating the positive/negative sentiment and confidence of sentences of text. I could see this as useful for analyzing comments. I’ve included the example from this site here to encourage my readers to take a look as I plan to do. Post IAM configuration I will be really curious to evaluate the responsiveness of this example. Is this truly a batch only operation or could you return some meaningful response timely?

This also lead to bookmarking for reading https://awsauroralabsmy.com/, https://github.com/aws-samples/amazon-aurora-labs-for-mysql/ and https://squidfunk.github.io/mkdocs-material/ all from this one page.

#WDILTW – To use a RDBMS is to use a transaction

I learned this week that 30+ years of Relational Database Management System (RDBMS) experience still does not prepare yourself for the disappointment of working with organizations that use a RDBMS; MySQL specifically; have a released production product, have dozens to hundreds of developers, team leaders and architects, but do not know the importance of, nor use transactions. If I was to ask this when interviewing somebody that would work with a database and the response was it is not important, or not used these days it would be a hard fail.

To use a RDBMS is to understand a very simple principle, a foundation of a transactional system. It is called ACID. Atomicity, Consistency, Isolation, Durability.

In a simplistic description of this 50 year principle.

  • A – It’s all or nothing
  • C – Your work meets all existing constraints
  • I – Your work is independent and not affected by other concurrent work
  • D – Your work is reproducible in the event of a hard failure

A – Atomicity means a transaction. It’s not rocket science, it’s actually in the description of a RDBMS. What is a transaction? It is a means in Structure Query Language (SQL) notation that can ensure your unit of work is all or nothing.

The most basic of examples is very simple. You want to deposit a check that was given to you. For the bank to accept this deposit, it needs to ensure that the account holder that issued the check has sufficient funds, that is Step 1: subtract amount X from account A, and Step 2: deposit in account B. You cannot do Step 1 or Step 2 independently, you must do 1 and 2 together, otherwise real money could be lost or created from thin air. The lack of transactions also can be affected by not handling I – Isolation.

We have to ask our educators and responsible professionals why? Why can such a bedrock principle not be used? Why in a team of individuals in a company, one single individual from the years of development and support not say, well you have to use a transaction to ensure the integrity of the data you are working with? It’s called a database for a reason.

The unfortunately reality is there are several reasons for this utter failure, and the frustration of professionals like myself.

  1. RDBMS is not the bedrock of data management it was 20,30 even 50 years ago. Today with a proliferation of different products, transactions are simply not taught. Even SQL is not taught, yet most products that want to enable users to query data ultimately provide a SQL-like interface. Many users today want a drag & drop GUI interface but not realize that is not how you manipulate data. Hadoop was a life change with map-reduce approach to large datasets. iIt did not start with SQL, but it has a widely used SQL interface now. You look at the newest hot products like snowflake. What is it’s method of data access, SQL.
  2. MySQL, the most popular open source database does not enforce transactions, it’s optional. What you say? MySQL has some unique features including the capability for multiple storage engines, that provide different features and capabilities, such as index approaches, consistency and support for transactions. An entire generation of open source products were released and do not use transactions, but use a transactional storage engine within a transactional product.
  3. Still on the topic of MySQL, it also does not enforce strict handling like other RDBMS products. The default for decades was to enable an SQL statement to corrupt the data integrity, i.e. C – Consistency. Because MySQL supported warnings and they were always not checked for by developers, data in did not guarantee data out.
  4. Every mini-generation (e.g. 5 years) of new developers think they know more, than seasoned professionals.

As it was for me in the 80s, it should be for use of a relational database; and even a non-relational database; to read and understand the seminal works of An introduction to Database Systems by C.J. Date. It has been required learning at universities for decades, but it seems to have lost is favor with multiple iterations of new software developers.

#3 – What Did I learn this week. WDILTW.

Defensive Data Techniques

As a data architect I always ensure that for any database schema change there a fully recoverable execution path.
I have generally advised to create a patch/revert process for every change.  For example, if a change adds a new column or index to a table, a revert script would remove the respective column or index.
The goal is to always have a defensive position for any changes. The concept is that simple, it is not complex.

In its simplest form I use the following directory and file structure.

/schema
    schema.sql
    /patch
        YYYYMMDDXX.sql     where XX,ZZ are sequential 2 digit numbers, e.g. 01,02
        YYYYMMDDZZ.sql
   /revert
       YYYYMMDDXX.sql   This is the same file name in the revert sub-directory.
       YYYYMMDDZZ.sql

At any commit or tag in configuration management it is possible to create a current copy of the schema, i.e. use schema.sql.
It is also possible to take the first version of schema.sql and apply chronologically all the patch scripts to arrive at the same consistent structure of the schema that is in schema.sql. You can also run a validation process to confirm these are equivalent.
For each tagged version or commit of this directory structure and files in version control, this should always hold true.
While not the desired execution path, every revert script can be applied in a reverse chronological order and return to the first version of the schema.
If you want to maintain a first_schema.sql file within the directory structure, you can always create any version of the schema from a given commit in a roll-forward or roll-back scenario.

In reality however this is rarely implemented. There is always divergence or drift. Drift occurs for several primary reasons. The first is non-adherence to the defined process. The second and more critical is the lack of adequate testing and verification at each and every step.  A Test Driven Design (TDD) that validates the given approach would enable a verification of end state of the schema and enable the verification at each accumulated

In addition to each patch/revert there needs to be a state that is maintained of what has been applied.  Generally for RDBMS storing this metadata within a table is recommended.

The above example shows files of .sql extension. Any schema management process needs to cater for .sh, .py or other extensions to cater for more complex operations.
 
What about data changes?  I would recommend that for all configuration information you follow the same management principles as for schema objects, that is you have a patch to insert/update/delete data, and you have a revert script that can restore that data.  Generally the complexity of the rollback process is a hurdle for developers/engineers. Having a framework is important to manage how data consistency is maintained. This framework could generate a statement to restore the data (e.g. a selective mysqldump), require a hand-crafted statement, or leverage the benefit of the RDBMS by storing the data into intermediate shallow tables.

Using a least privileged model complicates an applicable framework approach. Does the user applying the change now require the FILE privilege, or CREATE/DROP privilege to create tables for the ability to restore data.

If there is strict referential integrity at the database level, those protections will defend against unintended consequences. For example, deleting a row that is dependent on a foreign key relationship.  In a normal operating system accommodations are made generally for the sake of performance, but also for supporting poor data cleansing requirements. If the application maintains a level of referential integrity, the schema management process also needs to support this, adding a further complexity.  Ensuring data integrity is an important separate topic. If there is a dangling row, what is the impact? The data still exists, it is just not presented in a user interface or included in calculations. This generally leads to greater unintended consequences that are generally never obvious at the time of execution, but rather days, weeks or months later.

When it comes to objects within the structure of an RDBMS the situation is more complex.  A classic example in MySQL is a user.  A user in MySQL is actually the user definition which is just the username, password and host.  A user contains one or more grants. The user may be the owner of additional objects. Using default and legacy MySQL, it is simply not possible to determine if a user is actually being used. Percona and other variances support INFORMATION_SCHEMA.USER_STATISTICS which is a better method of evaluating the use of a user.  This does however require the intervention of time-based data collection, as this table is the accumulative statistics since an instance restart or flush.

With this type of object, or meta object several defensive techniques exist.  

If you had the user `blargie` and that user had grants to read data from several schemas, is the user used?  I don’t think so, let’s just delete it is not a fact-based approach to avoiding a subsequent problem.
Is the user used? Let’s revoke the users privileges and monitor for errors or user feedback? Or let’s change the user’s password?  With each of these strategies it is important to always have a defensive process to rollback.
A different approach is to use a common data technique of marking information as deleted before it’s physically deleted (think trash can before you empty the trash).  For MySQL users there is no default functionality (in the most recent versions of MySQL you can DISABLE a user).  One implementation to apply this pattern is to rename the user, which has the benefit of keeping the user’s password and privileges intack, therefore reducing the amount of complexity in restoring.

Regardless of the technique, it is important there is always a recovery path.  In a subsequent post I will discuss this approach towards cloud metadata, for example an AWS KMS policy, IAM Rule or ASG setting and the impact of  Infrastructure as a Service (IaaS) such as Terraform.

More reading https://en.wikipedia.org/wiki/Test-driven_development, https://en.wikipedia.org/wiki/Defensive_programming

MySQL Data Security Risk Assessment presentation

Securing your data is only as good as your weakest link. A clear-text password in a file or history file, shared privileges between test and production or open sudo access when you can connect as an unprivileged user all are security flaws. This talk discusses how to navigate the poor defaults MySQL has in place, how to strengthen processes and how to audit your environment. It also covers the complexity of deploying changes in an always available production environment.

Presented at the Data.Ops Conference in Barcelona, Spain.
Download slides

Identifying MySQL SSL communication using ngrep

Prior to MySQL 5.7 client communications with a MySQL instance were unencrypted by default. This plaintext capability allowed for various tools including pt-query-digest to analyze TCP/IP traffic. Starting with MySQL 5.7 SSL is enabled by default and will be used in client communications if SSL is detected on the server.

We can detect and confirm this easily with the ngrep command.

Default client connection traffic (5.6)

On a MySQL 5.6 server we monitor the default MySQL port traffic.

mysql56$ sudo ngrep -d eth1 -wi -P ' ' -W single -l port 3306
interface: eth1 (192.168.42.0/255.255.255.0)
filter: ( port 3306 ) and ((ip || ip6) || (vlan && (ip || ip6)))
...

We connect to this server using TCP/IP.

host$ mysql -uexternal -p -h192.168.42.16
mysql56> select 'unencrypted';

We can observe the communication to and from the server (in this example 192.168.42.16) is plaintext.

...
#
T 192.168.42.1:47634 -> 192.168.42.16:3306 [AP]      select 'unencrypted'
#
T 192.168.42.16:3306 -> 192.168.42.1:47634 [AP]      !    def    unencrypted  ! !                       unencrypted
#

SSL System Variables (5.6 default)

A default 5.6 installation does not have SSL enabled as verified by system variables.

mysql56 >SHOW  VARIABLES  LIKE '%ssl%';
+---------------+----------+
| Variable_name | Value    |
+---------------+----------+
| have_openssl  | DISABLED |
| have_ssl      | DISABLED |
| ssl_ca        |          |
| ssl_capath    |          |
| ssl_cert      |          |
| ssl_cipher    |          |
| ssl_crl       |          |
| ssl_crlpath   |          |
| ssl_key       |          |
+---------------+----------+
9 rows in set (0.02 sec)

Default client connection traffic (5.7)

Running the same example client connection with MySQL 5.7 you will observe that communications to and from the server (in this example 192.168.42.17) are not in plaintext.

mysql57$ sudo ngrep -d eth1 -wi -P ' ' -W single -l port 3306
interface: eth1 (192.168.42.0/255.255.255.0)
filter: ( port 3306 ) and ((ip || ip6) || (vlan && (ip || ip6)))

host$ mysql -uexternal -p -h192.168.42.17
mysql57> select 'encrypted';


T 192.168.42.1:36781 -> 192.168.42.17:3306 [AP]     @    F   l   d iVr  H   b ^    s t Z      ( 2d   " ?  |   )
#
T 192.168.42.17:3306 -> 192.168.42.1:36781 [AP]     p%  s`   3u5!%P]   v=  r # x   E   a y  '!    )Z    8   Js  z.  \t   (r H@     0 2 5k\    <   M  @)E& b q|q@    h

SSL System Variables (5.7 default)

A new MySQL 5.7 installation will have SSL enabled by default as seen in the MySQL variables.

mysql57 > SHOW GLOBAL VARIABLES LIKE '%ssl%';
+---------------+-----------------+
| Variable_name | Value           |
+---------------+-----------------+
| have_openssl  | YES             |
| have_ssl      | YES             |
| ssl_ca        | ca.pem          |
| ssl_capath    |                 |
| ssl_cert      | server-cert.pem |
| ssl_cipher    |                 |
| ssl_crl       |                 |
| ssl_crlpath   |                 |
| ssl_key       | server-key.pem  |
+---------------+-----------------+
9 rows in set (0.00 sec)

-no-ssl Client connection traffic (5.7)

If you want to emulate the unencrypted nature of MySQL 5.6 within any SSL enabled MySQL version (e.g. MySQL 5.7) you specify the --ssl option for mysql client connections. In MySQL 5.7 this option is also deprecated and --ssl-mode=disabled should be used>.

host$ > mysql -uexternal -p -h192.168.42.17 --ssl=0

host >select '-ssl=0 unencrypted';

T 192.168.42.1:36785 -> 192.168.42.17:3306 [AP]      select '-ssl=0 unencrypted'
#
T 192.168.42.17:3306 -> 192.168.42.1:36785 [AP]      '    def    -ssl=0 unencrypted  ! 3              -ssl=0 unencrypted

References

https://wiki.christophchamp.com/index.php?title=Ngrep
http://infoheap.com/ngrep-quick-start-guide/
Encrypted Connections - MySQL 5.7 Reference Manual
Implementing MySQL Security Features - Tutorial at Percona Live Europe 2017.

Testing MySQL/MariaDB/Percona versions with Docker

Giuseppe Maxia has provided some great MySQL docker images. Percona and MariaDB also provide version via Docker Hub. In an attempt to have a consistent means of launching these different images I created the following convenience functions.

  1. Install docker for your OS. See Official Docker installation instructions.
  2. Get dockerhelper.sh
  3. Run your desired variant and version.

$ wget https://raw.githubusercontent.com/ronaldbradford/mysql-docker-minimal/master/dockerhelper.sh
$ . ./dockerhelper.sh
Docker Registered functions are:  docker_mysql, docker_percona, docker_mariadb

$ docker_mysql
ERROR: Specify a MySQL version to launch. Valid versions are 5.0 5.1 5.5 5.6 5.7 8.0
$ docker_percona
ERROR: Specify a Percona version to launch. Valid versions are 5.5 5.6 5.7
$ docker_mariadb
ERROR: Specify a MariaDB version to launch. Valid versions are 5.5 10.0 10.1

Q: Does MySQL support ACID? A: Yes

I was recently asked this question by an experienced academic at the NY Oracle Users Group event I presented at.

Does MySQL support ACID? (ACID is a set of properties essential for a relational database to perform transactions, i.e. a discrete unit of work.)

Yes, MySQL fully supports ACID, that is Atomicity, Consistency, Isolation and Duration. (*)

This is contrary to the first Google response found searching this question which for reference states “The standard table handler for MySQL is not ACID compliant because it doesn’t support consistency, isolation, or durability”.

The question is however not a simple Yes/No because it depends on timing within the MySQL product’s lifecycle and the version/configuration used in deployment. What is also *painfully* necessary is to understand why this question would even be asked of the most popular open source relational database.

MySQL has a unique characteristic of supporting multiple storage engines. These engines enabling varying ways of storing and retrieving data via the SQL interface in MySQL and have varying features for supporting transactions, locking, index strategies, compression etc. The problem is that the default storage engine from version 3.23 (1999) to 5.1 (2010) was MyISAM, a non-transactional engine, and hence the first point of confusion.

The InnoDB storage engine has been included and supported from MySQL 3.23. This is a transactional engine supporting ACID properties. However, not all of the default settings in the various MySQL versions have fully meet all ACID needs, specifically the durability of data. This is the second point of confusion. Overtime other transactional storage engines in MySQL have come and gone. InnoDB has been there since the start so there is no excuse to not write applications to fully support transactions. The custodianship of Oracle Corporation starting in 2010 quickly corrected this *flaw* by ensuring the default storage engine in MySQL 5.5 is InnoDB. But the damage to the ecosystem that uses MySQL, that is many thousands of open source projects, and the resources that work with MySQL has been done. Recently working on a MySQL 5.5 production system in 2016, the default engine was specifically defined in the configuration defined as MyISAM, and some (but not all tables) were defined using MyISAM. This is a further conversation as to why, is this a upgrade problem? Are there legacy dependencies with applications? Are the decision makers and developers simply not aware of the configuration? Or, are developers simply not comfortable with transactions?

Like other anti-reasonable MySQL defaults the unaware administrator or developer could consider MySQL as supporting ACID properties, however until detailed testing with concurrency and error conditions not realize the impact of poor configuration settings.

The damage of having a non-transactional storage engine as the default for over a decade has created a generation of professionals and applications that abuses one of the primary usages of a relational database, that is a transaction, i.e. to product a unit for work that is all or nothing. Popular open source projects such as WordPress, Drupal and hundreds more have for a long time not supported transactions or used InnoDB. Mediawiki was at least one popular open source project that was proactive towards InnoDB and transaction usage. The millions of plugins, products and startups that build on these technologies have the same flaws.

Further confusion arises when an application uses InnoDB tables but does not use transactions, or the application abuses transactions, for example 3 different transactions that should really be 1.

While newer versions of MySQL 5.6 and 5.7 improve default configurations, until these versions a more commonly implemented non-transactional use in a relational database will remain. A recent Effective MySQL NYC Meetup survey showed that installations of version 5.0 still exist, and that few have a policy for a regular upgrade cadence.

Do you control your database outages?

Working with a client last week I noted in my analysis, “The mysql server was restarted on Thursday and so the [updated] my.cnf settings seems current”. This occurred between starting my analysis on Wednesday and delivering my findings on Friday.

# more /var/lib/mysql/ip-104-238-102-213.secureserver.net.err
160609 17:04:43 [Note] /usr/sbin/mysqld: Normal shutdown

The client however stated they did not restart MySQL and would not do that at 5pm which is still a high usage time of the production system. This is unfortunately not an uncommon finding, that a production system had an outage and that the client did not know about it and did not instigate this.

There are several common causes and the “DevOps” mindset for current production systems has made this worse.

  • You have managed hosting and they perform software updates with/without your knowledge. I have for example worked with several Rackspace customers and there would be an outage because Rackspace engineers decided to apply an upgrade at a time that suited them, not their customers.
  • You have chosen automate updates for your Operating System.
  • Your developers update the software when they like.
  • You are using a 3rd party product that is making an arbitrary decision.

In this case the breadcrumbs lead to the last option, that cPanel is performing this operation as hinted by the cPanel specific installed MySQL binaries.

$ rpm -qa | grep -i mysql
cpanel-perl-522-MySQL-Diff-0.43-1.cp1156.x86_64
MySQL55-devel-5.5.50-1.cp1156.x86_64
MySQL55-client-5.5.50-1.cp1156.x86_64
cpanel-perl-522-DBD-mysql-4.033-1.cp1156.x86_64
compat-MySQL50-shared-5.0.96-4.cp1136.x86_64
MySQL55-server-5.5.50-1.cp1156.x86_64
cpanel-mysql-libs-5.1.73-1.cp1156.x86_64
MySQL55-shared-5.5.50-1.cp1156.x86_64
MySQL55-test-5.5.50-1.cp1156.x86_64
compat-MySQL51-shared-5.1.73-1.cp1150.x86_64
cpanel-mysql-5.1.73-1.cp1156.x86_64

Also note that cPanel still uses MySQL 5.1 shared libraries.

So why did cPanel perform not one shutdown, but two in immediate succession? The first was 17 seconds, the second was 2 seconds. Not being experienced with cPanel I cannot offer an answer for this shutdown occurance. I can for others which I will detail later.

160609 17:04:24 [Note] /usr/sbin/mysqld: Normal shutdown
...
160609 17:04:28 [Note] /usr/sbin/mysqld: Shutdown complete
...
160609 17:04:41 [Note] /usr/sbin/mysqld: ready for connections.
...
160609 17:04:43 [Note] /usr/sbin/mysqld: Normal shutdown
...
160609 17:04:45 [Note] /usr/sbin/mysqld: ready for connections.
...

And why did the customer not know about the outage? If you use popular SaaS monitoring solutions such as New Relic and Pingdom you would not have been informed because these products have a sampling time of 60 seconds. I use these products along with Nagios on my personal blog site as they provide adequate instrumentation based on the frequency of usage. I would not recommend these tools as the only tools used in a high volume production system simply because of this one reason. In high volume system you need sampling are much finer granularity.

So just when you were going to justify that 17 seconds while unexpected is tolerable, I want to point out that this subsequently occurred and the outage was over 4 minutes.

160619 11:58:07 [Note] /usr/sbin/mysqld: Normal shutdown
...
160619 12:02:26 mysqld_safe Starting mysqld daemon with databases from /var/lib/mysql
...

An analysis of the MySQL error log which is correctly not rolled as I always recommend showed a pattern of regular MySQL updates, from 5.5.37 thru 5.5.50. This is the most likely reason a 3rd party product has performed a database outage, to perform a software update at their choosing, not yours.

150316  3:54:11 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.37-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

150316  3:54:22 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.37-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

150316 19:07:31 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.37-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

150317  2:05:45 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.40-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

150317  2:05:54 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.40-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

150319  1:17:26 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.42-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

150319  1:17:34 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.42-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

150616  1:39:44 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.42-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

150616  1:39:52 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.42-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

151006  1:01:45 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.45-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

151006  1:01:54 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.45-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

151027  1:21:12 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.46-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

160105  1:31:35 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.47-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

160211  1:52:47 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.48-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

160211  1:52:55 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.48-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

160503  1:14:59 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.49-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

160503  1:15:03 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.49-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

160521 18:46:24 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.49-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

160522 11:51:45 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.49-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

160529 15:26:41 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.49-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

160529 15:30:12 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.49-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

160604 23:29:15 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.49-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

160609 17:04:41 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.50-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

160609 17:04:45 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.50-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 3306  MySQL Community Server (GPL)

160619 12:21:58 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.50-cll'  socket: '/var/lib/mysql/mysql.sock'  port: 0  MySQL Community Server (GPL)

What is intriguing from this analysis is that several versions were skipped including .38, .39, .41, .43, .44. One may ask the question why?

For Clients

This leads to several questions of the strategy used in your organization for controlling outages of your MySQL infrastructure for upgrades or for other reasons.

  • What is an acceptable outage time?
  • What is the acceptable maintenance window to perform outages?
  • What is your release cadence for MySQL upgrades?
  • Who or what performs updates?
  • Can your monitoring detect small outages?

You should also consider in your business strategy having a highly available (HA) MySQL infrastructure to avoid any outage, or application intelligence to support varying levels of data access as I describe in Successful MySQL Scalability Principles.

Utilizing OpenStack Trove DBaaS for deployment management

Trove is used for self service provisioning and lifecycle management for relational and non-relational databases in an OpenStack cloud. Trove provides a RESTful API interface that is same regardless of the type of database. CLI tools and a web UI via Horizon are also provided wrapping Trove API requests.

In simple terms. You are a MySQL shop. You run a replication environment with daily backups and failover capabilities which you test and verify regularly. You have defined DBA and user credentials ACL’s across dev, test and prod environments. Now there is a request for using MongoDB or Cassandra, the engineering department has not decided but they want to evaluate the capabilities. How long as a operator does it take to acquire the software, install, configure, setup replication, backups, ACLs and enable the engineering department to evaluate the products?

With Trove DBaaS this complexity is eliminated due to a consistent interface to perform the provisioning, configuration, HA, B&R, ACL across other products the exact same way you perform these tasks for MySQL. This enables operations to be very proactive to changing technology requests supporting digital transformation strategies.

Enabling this capability is not an automatic approval of a new technology stack. It is important that strategic planning, support and management is included in the business strategy to understanding the DBaaS capability for your organization. Examples of operations due diligence would include how to integrate these products into your monitoring, logging and alerting systems. Determine what additional disk storage requirements may be needed. Test, verify and time recovery strategies.

Trove specifically leverages several other OpenStack services for source image and instance management. Each trove guest image includes a base operating system, the applicable database software and a database technology specific trove guest agent. This agent is the intelligence that knows the specific syntax and version needs to perform the tasks. The agent is also the communication mechanism between Trove and the running nova instance.

Trove is a total solution manager for the instance running your chosen database. Instances have no ssh, telnet or other general access. The only access is via the SQL communication via the defined ports, e.g. 3306 for MySQL.

The Trove lifecycle management covers the provisioning, management, security, configuration and tuning of your database. Amrith Kumar in a recent presentation at the NYC Postgres meetup provides a good description of the specifics.

Trove is capable of describing and supporting clustering and replication topologies for the various data stores. It can support backup and restore, failover and resizing of clusters without the operator needing to know the specific syntax of complexities of a database product they are unfamiliar with.

A great example is the subtle difference in MySQL replication management using GTID’s between MySQL and MariaDb. To the developer, the interaction between MySQL and MariaDB via SQL is the same, the management of a replication topology is not identical, but is managed by the Trove guest agent. To the operator, the management is the same.

Also in his presentation, Kumar described Tesora, an enterprise class Trove service provided with a number of important additional features. Tesora supports additional database products including Oracle and DB2Express as well as commercial versions for Oracle MySQL, EnterpriseDB, Couchbase, Datastax, and mongoDB. Using the Horizon UI customizations with pre-defined trove instances greatly reduces the work needed for operators and deployers to build there own.

Managing MySQL Version Upgrades Presentation

The following presentation was given at the Oracle Technology Network (OTN) Latin America 2015 tour events in Uruguay, Argentina, Chile and Peru.

In this presentation I talk about the various versions and means of installing and upgrading MySQL including:

  • MySQL version history from 3.23 to 5.7.8
  • Historical installation options
  • Recommended use of Oracle yum repository for current version
  • The installation and upgrade process, and errors that occur
  • Compatibility changes between MySQL 5.5 and MySQL 5.6 including
    • Reserved words (and their true impact)
    • Legacy TIMESTAMP usage
    • FULLTEXT indexes
    • The query optimizer
    • Clear text password warnings and security improvements
  • Important configuration differences
  • Other recommendations
  • The use of replication

Testing and Verifying your MySQL Backup Strategy Presentation

This past week I have been the sole MySQL representative on the Oracle Technology Network (OTN) Latin America 2015 tour events in Uruguay, Argentina, Chile and Peru.

In this presentation I talk about the important steps for testing and verifying your MySQL backup strategy to ensure your business continuity in any disaster recovery situation. This includes:

  • Overview of the primary product options
  • Backup and recovery strategy considerations
  • Technical requirements
  • Common problems observed
  • What about a failover strategy

Updating MySQL on Ubuntu 12.04 LTS to MySQL 5.6

The Ubuntu 12.04.3 LTS release only provides MySQL 5.1 and MySQL 5.5 using the default Ubuntu package manager.

Oracle (owners of the MySQL(tm)) now provide Debian/Ubuntu APT repositories for all GA and DMR versions of MySQL including supporting Ubuntu 12.04.

The following steps demonstrate upgrading from the Ubuntu 5.5 server package to the Oracle 5.6 server package.

Verify MySQL Packages

$ apt-cache search mysql-server
mysql-server - MySQL database server (metapackage depending on the latest version)
mysql-server-5.5 - MySQL database server binaries and system database setup
mysql-server-core-5.5 - MySQL database server binaries
auth2db - Powerful and eye-candy IDS logger, log viewer and alert generator
cacti - Frontend to rrdtool for monitoring systems and services
torrentflux - web based, feature-rich BitTorrent download manager

Verify MySQL on Server

$  dpkg -l | grep mysql
ii  libdbd-mysql-perl                      4.020-1build2                                       Perl5 database interface to the MySQL database
ii  libmysqlclient-dev                     5.5.34-0ubuntu0.12.04.1                             MySQL database development files
ii  libmysqlclient18                       5.5.34-0ubuntu0.12.04.1                             MySQL database client library
ii  mysql-client-5.5                       5.5.31-0ubuntu0.12.04.1                             MySQL database client binaries
ii  mysql-client-core-5.5                  5.5.34-0ubuntu0.12.04.1                             MySQL database core client binaries
ii  mysql-common                           5.5.34-0ubuntu0.12.04.1                             MySQL database common files, e.g. /etc/mysql/my.cnf
ii  mysql-server-5.5                       5.5.31-0ubuntu0.12.04.1                             MySQL database server binaries and system database setup
ii  mysql-server-core-5.5                  5.5.31-0ubuntu0.12.04.1                             MySQL database server binaries
ii  php5-mysqlnd                           5.3.10-1ubuntu3.8                                   MySQL module for php5 (Native Driver)

Results may vary based on dependencies.

Checking the MySQL error log (as it’s the right good practice to always do)

$ sudo tail -50 /var/log/mysql/error.log
150402 16:02:49 [Note] Plugin 'FEDERATED' is disabled.
150402 16:02:49 InnoDB: The InnoDB memory heap is disabled
150402 16:02:49 InnoDB: Mutexes and rw_locks use GCC atomic builtins
150402 16:02:49 InnoDB: Compressed tables use zlib 1.2.3.4
150402 16:02:49 InnoDB: Initializing buffer pool, size = 1.0G
150402 16:02:49 InnoDB: Completed initialization of buffer pool
150402 16:02:49 InnoDB: highest supported file format is Barracuda.
150402 16:02:49  InnoDB: Waiting for the background threads to start
150402 16:02:50 InnoDB: 5.5.31 started; log sequence number 20079278867
150402 16:02:50 [Note] Server hostname (bind-address): '127.0.0.1'; port: 3306
150402 16:02:50 [Note]   - '127.0.0.1' resolves to '127.0.0.1';
150402 16:02:50 [Note] Server socket created on IP: '127.0.0.1'.
150402 16:02:50 [Note] Event Scheduler: Loaded 0 events
150402 16:02:50 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.5.31-0ubuntu0.12.04.1'  socket: '/var/run/mysqld/mysqld.sock'  port: 3306  (Ubuntu)

A check shows that this is not the most current version available of 5.5 using the Ubuntu packages.

$ apt-cache show mysql-server-5.5
Package: mysql-server-5.5
Priority: optional
Section: database
Installed-Size: 31947
Maintainer: Ubuntu Developers 
Original-Maintainer: Debian MySQL Maintainers 
Architecture: amd64
Source: mysql-5.5
Version: 5.5.41-0ubuntu0.12.04.1
...

Package: mysql-server-5.5
Status: install ok installed
Priority: optional
Section: database
Installed-Size: 31950
Maintainer: Ubuntu Developers 
Architecture: amd64
Source: mysql-5.5
Version: 5.5.31-0ubuntu0.12.04.1
...

Just to be consistent with keeping current versions, you may choose to update MySQL 5.5 to the current available version.

$ sudo apt-get install mysql-server-5.5
...

Installing Oracle APT Packaging

The recommended documented way to move to using the Oracle repo is:

cd /tmp
# See https://dev.mysql.com/downloads/repo/apt/ for your right distro version
wget https://dev.mysql.com/get/mysql-apt-config_0.3.3-2ubuntu12.04_all.deb
sudo dpkg -i mysql-apt-config*.deb

This unfortunately uses a cursors based interface which is not something you automate for production systems and not the approach I would suggest.

So doing what this does

echo "deb http://repo.mysql.com/apt/ubuntu/ precise mysql-apt-config
deb http://repo.mysql.com/apt/ubuntu/ precise mysql-5.6" | sudo tee /etc/apt/sources.list.d/mysql.list
curl -s http://ronaldbradford.com/mysql/mysql.gpg | sudo apt-key add -
sudo apt-get update

Now we can look at available versions.


$ apt-cache search mysql-server
mysql-server-5.5 - MySQL database server binaries and system database setup
mysql-server-core-5.5 - MySQL database server binaries
auth2db - Powerful and eye-candy IDS logger, log viewer and alert generator
cacti - Frontend to rrdtool for monitoring systems and services
torrentflux - web based, feature-rich BitTorrent download manager
mysql-community-server - MySQL Server
mysql-server - MySQL Server meta package depending on latest version

This is where life gets a little confusing. Because Ubuntu supported MySQL 5.1 (as mysql-server) and MySQL 5.5 (as mysql-server-5.5) it can be misleading.

$ apt-cache show mysql-server
$ apt-cache show mysql-server
Package: mysql-server
Source: mysql-community
Version: 5.6.23-1ubuntu12.04
Architecture: amd64
Maintainer: MySQL Release Engineering 
Installed-Size: 46
Depends: mysql-community-server (= 5.6.23-1ubuntu12.04)
Homepage: http://www.mysql.com/
Priority: optional
Section: database
Filename: pool/mysql-5.6/m/mysql-community/mysql-server_5.6.23-1ubuntu12.04_amd64.deb
Size: 11644
SHA256: 1cb166cd230d2a4daca761ea80f2f34ee1fc0c92aaae972c914d81746f235d63
SHA1: 63548c852d5faeda751fbf038c0799fbbeac9905
MD5sum: da2f709a29a7cac97c834e6e69929891
Description: MySQL Server meta package depending on latest version
 The MySQL(TM) software delivers a very fast, multi-threaded, multi-user,
 and robust SQL (Structured Query Language) database server. MySQL Server
 is intended for mission-critical, heavy-load production systems as well
 as for embedding into mass-deployed software. MySQL is a trademark of
 Oracle. This is a meta package that depends on the latest mysql server
 package available in the repository.

Package: mysql-server
Priority: optional
Section: database
Installed-Size: 114
Maintainer: Ubuntu Developers 
Original-Maintainer: Debian MySQL Maintainers 
Architecture: all
Source: mysql-5.5
Version: 5.5.41-0ubuntu0.12.04.1
...

We are looking to ensure the Maintainer is the Official Release.

Upgrading to MySQL 5.6

sudo service mysql stop
ps -ef | grep mysql
sudo apt-get install -y mysql-server
$ sudo apt-get install -y mysql-server
...
The following extra packages will be installed:
  mysql-client mysql-common mysql-community-client mysql-community-server
The following packages will be REMOVED:
  mysql-client-5.5 mysql-client-core-5.5 mysql-server-5.5 mysql-server-core-5.5
The following NEW packages will be installed:
  mysql-client mysql-community-client mysql-community-server mysql-server
The following packages will be upgraded:
  mysql-common
...
Configuration file `/etc/mysql/my.cnf'
 ==> Modified (by you or by a script) since installation.
 ==> Package distributor has shipped an updated version.
   What would you like to do about it ?  Your options are:
    Y or I  : install the package maintainer's version
    N or O  : keep your currently-installed version
      D     : show the differences between the versions
      Z     : start a shell to examine the situation
 The default action is to keep your current version.
*** my.cnf (Y/I/N/O/D/Z) [default=N] ? N
...
Installing new version of config file /etc/apparmor.d/usr.sbin.mysqld ...
2015-04-02 16:53:07 0 [Warning] Using unique option prefix key_buffer instead of key_buffer_size is deprecated and will be removed in a future release. Please use the full name instead.
2015-04-02 16:53:07 0 [Warning] TIMESTAMP with implicit DEFAULT value is deprecated. Please use --explicit_defaults_for_timestamp server option (see documentation for more details).
150402 16:53:14 mysqld_safe Can't log to error log and syslog at the same time.  Remove all --log-error configuration options for --syslog to take effect
...

You may think the process is completed, but it is not. Always, Always check the error log. Have you checked your MySQL error log today?

$ sudo tail -300 /var/log/mysql/error.log
...
2015-04-02 16:53:14 20429 [Warning] Buffered warning: Changed limits: table_cache: 431 (requested 2000)

2015-04-02 16:53:14 20429 [Warning] Using unique option prefix myisam-recover instead of myisam-recover-options is deprecated and will be removed in a future release. Please use the full name instead.
2015-04-02 16:53:14 20429 [Note] Plugin 'FEDERATED' is disabled.
2015-04-02 16:53:14 20429 [Note] InnoDB: Using atomics to ref count buffer pool pages
2015-04-02 16:53:14 20429 [Note] InnoDB: The InnoDB memory heap is disabled
2015-04-02 16:53:14 20429 [Note] InnoDB: Mutexes and rw_locks use GCC atomic builtins
2015-04-02 16:53:14 20429 [Note] InnoDB: Memory barrier is not used
2015-04-02 16:53:14 20429 [Note] InnoDB: Compressed tables use zlib 1.2.3.4
2015-04-02 16:53:14 20429 [Note] InnoDB: Using Linux native AIO
2015-04-02 16:53:14 20429 [Note] InnoDB: Not using CPU crc32 instructions
2015-04-02 16:53:14 20429 [Note] InnoDB: Initializing buffer pool, size = 1.0G
2015-04-02 16:53:15 20429 [Note] InnoDB: Completed initialization of buffer pool
2015-04-02 16:53:15 20429 [Note] InnoDB: Highest supported file format is Barracuda.
2015-04-02 16:53:15 20429 [Note] InnoDB: 128 rollback segment(s) are active.
2015-04-02 16:53:15 20429 [Note] InnoDB: Waiting for purge to start
2015-04-02 16:53:15 20429 [Note] InnoDB: 5.6.23 started; log sequence number 20079286519
2015-04-02 16:53:15 20429 [Warning] No existing UUID has been found, so we assume that this is the first time that this server has been started. Generating a new UUID: 487fda28-d97a-11e4-9254-e0cb4e3feb73.
2015-04-02 16:53:15 20429 [Note] Server hostname (bind-address): '127.0.0.1'; port: 3306
2015-04-02 16:53:15 20429 [Note]   - '127.0.0.1' resolves to '127.0.0.1';
2015-04-02 16:53:15 20429 [Note] Server socket created on IP: '127.0.0.1'.
2015-04-02 16:53:15 20429 [ERROR] Column count of mysql.events_waits_current is wrong. Expected 19, found 16. Created with MySQL 50541, now running 50623. Please use mysql_upgrade to fix this error.
2015-04-02 16:53:15 20429 [ERROR] Column count of mysql.events_waits_history is wrong. Expected 19, found 16. Created with MySQL 50541, now running 50623. Please use mysql_upgrade to fix this error.
2015-04-02 16:53:15 20429 [ERROR] Column count of mysql.events_waits_history_long is wrong. Expected 19, found 16. Created with MySQL 50541, now running 50623. Please use mysql_upgrade to fix this error.
2015-04-02 16:53:15 20429 [ERROR] Native table 'performance_schema'.'events_waits_summary_by_host_by_event_name' has the wrong structure
2015-04-02 16:53:15 20429 [ERROR] Incorrect definition of table performance_schema.events_waits_summary_by_thread_by_event_name: expected column 'THREAD_ID' at position 0 to have type bigint(20), found type int(11).
2015-04-02 16:53:15 20429 [ERROR] Native table 'performance_schema'.'events_waits_summary_by_user_by_event_name' has the wrong structure
2015-04-02 16:53:15 20429 [ERROR] Native table 'performance_schema'.'events_waits_summary_by_account_by_event_name' has the wrong structure
2015-04-02 16:53:15 20429 [ERROR] Column count of mysql.file_summary_by_event_name is wrong. Expected 23, found 5. Created with MySQL 50541, now running 50623. Please use mysql_upgrade to fix this error.
2015-04-02 16:53:15 20429 [ERROR] Column count of mysql.file_summary_by_instance is wrong. Expected 25, found 6. Created with MySQL 50541, now running 50623. Please use mysql_upgrade to fix this error.
2015-04-02 16:53:15 20429 [ERROR] Native table 'performance_schema'.'host_cache' has the wrong structure
2015-04-02 16:53:15 20429 [ERROR] Incorrect definition of table performance_schema.mutex_instances: expected column 'LOCKED_BY_THREAD_ID' at position 2 to have type bigint(20), found type int(11).
2015-04-02 16:53:15 20429 [ERROR] Native table 'performance_schema'.'objects_summary_global_by_type' has the wrong structure
2015-04-02 16:53:15 20429 [ERROR] Incorrect definition of table performance_schema.rwlock_instances: expected column 'WRITE_LOCKED_BY_THREAD_ID' at position 2 to have type bigint(20), found type int(11).
2015-04-02 16:53:15 20429 [ERROR] Native table 'performance_schema'.'setup_actors' has the wrong structure
2015-04-02 16:53:15 20429 [ERROR] Native table 'performance_schema'.'setup_objects' has the wrong structure
2015-04-02 16:53:15 20429 [ERROR] Native table 'performance_schema'.'table_io_waits_summary_by_index_usage' has the wrong structure
2015-04-02 16:53:15 20429 [ERROR] Native table 'performance_schema'.'table_io_waits_summary_by_table' has the wrong structure
2015-04-02 16:53:15 20429 [ERROR] Native table 'performance_schema'.'table_lock_waits_summary_by_table' has the wrong structure
2015-04-02 16:53:15 20429 [ERROR] Column count of mysql.threads is wrong. Expected 14, found 3. Created with MySQL 50541, now running 50623. Please use mysql_upgrade to fix this error.
2015-04-02 16:53:15 20429 [ERROR] Native table 'performance_schema'.'events_stages_current' has the wrong structure
2015-04-02 16:53:15 20429 [ERROR] Native table 'performance_schema'.'events_stages_history' has the wrong structure
2015-04-02 16:53:15 20429 [ERROR] Native table 'performance_schema'.'events_stages_history_long' has the wrong structure
...

Completing the MySQL 5.6 Upgrade

A MySQL upgrade of the meta schema is necessary.

$ sudo mysql_upgrade -uroot -p
Enter password:
Looking for 'mysql' as: mysql
Looking for 'mysqlcheck' as: mysqlcheck
Running 'mysqlcheck' with connection arguments: '--port=3306' '--socket=/var/run/mysqld/mysqld.sock'
Warning: Using a password on the command line interface can be insecure.
Running 'mysqlcheck' with connection arguments: '--port=3306' '--socket=/var/run/mysqld/mysqld.sock'
Warning: Using a password on the command line interface can be insecure.
mysql.columns_priv                                 OK
mysql.db                                           OK
mysql.event                                        OK
mysql.func                                         OK
mysql.general_log                                  OK
mysql.help_category                                OK
mysql.help_keyword                                 OK
mysql.help_relation                                OK
mysql.help_topic                                   OK
mysql.host                                         OK
mysql.ndb_binlog_index                             OK
mysql.plugin                                       OK
mysql.proc                                         OK
mysql.procs_priv                                   OK
mysql.proxies_priv                                 OK
mysql.servers                                      OK
mysql.slow_log                                     OK
mysql.tables_priv                                  OK
mysql.time_zone                                    OK
mysql.time_zone_leap_second                        OK
mysql.time_zone_name                               OK
mysql.time_zone_transition                         OK
mysql.time_zone_transition_type                    OK
mysql.user                                         OK
Running 'mysql_fix_privilege_tables'...
Warning: Using a password on the command line interface can be insecure.
Running 'mysqlcheck' with connection arguments: '--port=3306' '--socket=/var/run/mysqld/mysqld.sock'
Warning: Using a password on the command line interface can be insecure.
Running 'mysqlcheck' with connection arguments: '--port=3306' '--socket=/var/run/mysqld/mysqld.sock'
Warning: Using a password on the command line interface can be insecure.
...
OK
$ sudo service mysql restart
$ sudo service mysql restart
 * Stopping MySQL Community Server 5.6.23
....
 * MySQL Community Server 5.6.23 is stopped
 * Re-starting MySQL Community Server 5.6.23
150402 17:06:17 mysqld_safe Can't log to error log and syslog at the same time.  Remove all --log-error configuration options for --syslog to take effect.
......
 * MySQL Community Server 5.6.23 is started
$ sudo tail -300 /var/log/mysql/error.log
...
2015-04-02 17:06:15 20429 [Note] /usr/sbin/mysqld: Shutdown complete

150402 17:06:15 mysqld_safe mysqld from pid file /var/run/mysqld/mysqld.pid ended
150402 17:06:17 mysqld_safe Starting mysqld daemon with databases from /var/lib/mysql
2015-04-02 17:06:17 0 [Warning] Using unique option prefix key_buffer instead of key_buffer_size is deprecated and will be removed in a future release. Please use the full name instead.
2015-04-02 17:06:17 0 [Warning] TIMESTAMP with implicit DEFAULT value is deprecated. Please use --explicit_defaults_for_timestamp server option (see documentation for more details).
2015-04-02 17:06:17 20994 [Warning] Buffered warning: Changed limits: max_open_files: 1024 (requested 5000)

2015-04-02 17:06:17 20994 [Warning] Buffered warning: Changed limits: table_cache: 431 (requested 2000)

2015-04-02 17:06:17 20994 [Warning] Using unique option prefix myisam-recover instead of myisam-recover-options is deprecated and will be removed in a future release. Please use the full name instead.
2015-04-02 17:06:17 20994 [Note] Plugin 'FEDERATED' is disabled.
2015-04-02 17:06:17 20994 [Note] InnoDB: Using atomics to ref count buffer pool pages
2015-04-02 17:06:17 20994 [Note] InnoDB: The InnoDB memory heap is disabled
2015-04-02 17:06:17 20994 [Note] InnoDB: Mutexes and rw_locks use GCC atomic builtins
2015-04-02 17:06:17 20994 [Note] InnoDB: Memory barrier is not used
2015-04-02 17:06:17 20994 [Note] InnoDB: Compressed tables use zlib 1.2.3.4
2015-04-02 17:06:17 20994 [Note] InnoDB: Using Linux native AIO
2015-04-02 17:06:17 20994 [Note] InnoDB: Not using CPU crc32 instructions
2015-04-02 17:06:17 20994 [Note] InnoDB: Initializing buffer pool, size = 1.0G
2015-04-02 17:06:17 20994 [Note] InnoDB: Completed initialization of buffer pool
2015-04-02 17:06:17 20994 [Note] InnoDB: Highest supported file format is Barracuda.
2015-04-02 17:06:17 20994 [Note] InnoDB: 128 rollback segment(s) are active.
2015-04-02 17:06:17 20994 [Note] InnoDB: Waiting for purge to start
2015-04-02 17:06:17 20994 [Note] InnoDB: 5.6.23 started; log sequence number 20081020877
2015-04-02 17:06:17 20994 [Note] Server hostname (bind-address): '127.0.0.1'; port: 3306
2015-04-02 17:06:17 20994 [Note]   - '127.0.0.1' resolves to '127.0.0.1';
2015-04-02 17:06:17 20994 [Note] Server socket created on IP: '127.0.0.1'.
2015-04-02 17:06:17 20994 [Note] Event Scheduler: Loaded 0 events
2015-04-02 17:06:17 20994 [Note] /usr/sbin/mysqld: ready for connections.
Version: '5.6.23'  socket: '/var/run/mysqld/mysqld.sock'  port: 3306  MySQL Community Server (GPL)

Correcting errors

As you can see there are several warnings/errors when starting MySQL.

The first is

 mysqld_safe Can't log to error log and syslog at the same time.  Remove all --log-error configuration options for --syslog to take effect.

We solve this with

$ sudo rm -f /etc/mysql/conf.d/mysqld_safe_syslog.cnf
$ sudo service mysql restart
 * Stopping MySQL Community Server 5.6.23
....
 * MySQL Community Server 5.6.23 is stopped
 * Re-starting MySQL Community Server 5.6.23
......
 * MySQL Community Server 5.6.23 is started

This is an Ubuntu default that conflicts with the my.cnf log_error were are familiar with in monitoring the MySQL error log. You can read my opinion on this in The correct approach to rolling MySQL logs

The second is

2015-04-02 17:06:17 0 [Warning] Using unique option prefix key_buffer instead of key_buffer_size is deprecated and will be removed in a future release. Please use the full name instead.

We solve this with

sudo sed -ie "s/^key_buffer[^_]/key_buffer_size/" /etc/mysql/my.cnf

Next

2015-04-02 17:18:06 22123 [Warning] Using unique option prefix myisam-recover instead of myisam-recover-options is deprecated and will be removed in a future release. Please use the full name instead.

We solve this with

sudo sed -ie "s/^myisam-recover[^-]/myisam-recover-options/" /etc/mysql/my.cnf

The warnings are interesting, and will part of the following post on MySQL 5.6 configuration changes discussed in the next point.

2015-04-02 17:22:08 22626 [Warning] Buffered warning: Changed limits: max_open_files: 1024 (requested 5000)
2015-04-02 17:22:08 22626 [Warning] Buffered warning: Changed limits: table_cache: 431 (requested 2000)

Leveraging MySQL 5.6 benefits

We may now have a MySQL 5.6 installation however we are far from utilizing the benefits of MySQL 5.6 fully. In a subsequent post I will talk about the configuration options we need to now consider, both new options such as innodb_purge_threads and important improvements such as sync_binlog. There are far greater complex changes including innodb_file_per_table, master_info_repository and relay_log_info_repository and then changes in defaults such as performance_schema

Validating MySQL version numbers

As part of a MySQL 5.5 to MySQL 5.6 upgrade across several Ubuntu servers of varying distros an audit highlighted a trivial but interesting versioning identification error in Ubuntu’s packaging of MySQL.

Ubuntu 12.04 LTS

$ sudo dpkg -l | grep mysql-server-5.5
ii  mysql-server-5.5   5.5.41-0ubuntu0.12.04.1  ...
$ mysql -uroot -p -e "SELECT VERSION()"
+-------------------------+
| VERSION()               |
+-------------------------+
| 5.5.41-0ubuntu0.12.04.1 |
+-------------------------+

But when you look at the mysql --version it does NOT say 5.5.41.

$ mysql --version
mysql  Ver 14.14 Distrib 5.5.34, for debian-linux-gnu (x86_64) using readline 6.2

Ubuntu 14.04 LTS

On 14.04 I get expected results.

$ sudo dpkg -l | grep mysql-server-5.5
ii  mysql-server-5.5       5.5.41-0ubuntu0.14.04.1   ...
rbradfor@rubble:~$ mysql -uroot -p -e "SELECT VERSION()"
+-------------------------+
| VERSION()               |
+-------------------------+
| 5.5.41-0ubuntu0.14.04.1 |
+-------------------------+
$ mysql --version
mysql  Ver 14.14 Distrib 5.5.41, for debian-linux-gnu (x86_64) using readline 6.3

Dynamic recreation of InnoDB redo logs

MySQL 5.6 will now automatically recreate the InnoDB redo log files during a MySQL restart if the size (or number) of these logs changes, i.e. a change to innodb_log_file_size. See Changing the Number or Size of InnoDB Log Files which states “If InnoDB detects that the innodb_log_file_size differs from the redo log file size, it will write a log checkpoint, close and remove the old log files, create new log files at the requested size, and open the new log files.”

Before MySQL 5.6 it was necessary to stop MySQL and remove the InnoDB log files manually before restarting MySQL.

The error log shows:

tail -f /mysql/log/error.log
...
2015-03-28 21:51:25 3767 [Warning] InnoDB: Resizing redo log from 2*3072 to 2*65536 pages, LSN=1626017
2015-03-28 21:51:25 3767 [Warning] InnoDB: Starting to delete and rewrite log files.
2015-03-28 21:51:25 3767 [Note] InnoDB: Setting log file ./ib_logfile101 size to 1024 MB
InnoDB: Progress in MB: 100 200 300 400 500 600 700 800 900 1000
2015-03-28 21:51:28 3767 [Note] InnoDB: Setting log file ./ib_logfile1 size to 1024 MB
InnoDB: Progress in MB: 100 200 300 400 500 600 700 800 900 1000
2015-03-28 21:51:31 3767 [Note] InnoDB: Renaming log file ./ib_logfile101 to ./ib_logfile0
2015-03-28 21:51:31 3767 [Warning] InnoDB: New log files created, LSN=1626017
...

It was however odd that MySQL had indicated it had successfully started but the underlying Redo log files were not complete and in-place as seen by the following directory listings.

$ sudo service mysql start
......
 * MySQL Community Server 5.6.23 is started
$
$ ls -lh /var/lib/mysql/
total 1.9G
-rw-rw---- 1 mysql mysql   56 Mar 28 19:42 auto.cnf
-rw-rw---- 1 mysql mysql  12M Mar 28 21:51 ibdata1
-rw-rw---- 1 mysql mysql 902M Mar 28 21:51 ib_logfile1
-rw-rw---- 1 mysql mysql 1.0G Mar 28 21:51 ib_logfile101
drwxr-x--- 2 mysql mysql 4.0K Mar 28 19:42 mysql
drwx------ 2 mysql mysql 4.0K Mar 28 19:42 performance_schema
$ ls -lh /var/lib/mysql/
total 2.1G
-rw-rw---- 1 mysql mysql   56 Mar 28 19:42 auto.cnf
-rw-rw---- 1 mysql mysql  12M Mar 28 21:51 ibdata1
    -rw-rw---- 1 mysql mysql 1.0G Mar 28 21:51 ib_logfile0 -rw-rw---- 1 mysql mysql 1.0G Mar 28 21:51 ib_logfile1 drwxr-x--- 2 mysql mysql 4.0K Mar 28 19:42 mysql drwx------ 2 mysql mysql 4.0K Mar 28 19:42 performance_schema

SQL, ANSI Standards, PostgreSQL and MySQL

I have recently been working with the Donors Choose Open Data Set which happens to be in PostgreSQL. Easy enough to install and load the data in PostgreSQL, however as I live and breath MySQL, lets load the data into MySQL.

And here is where start our discussion, first some history.

SQL History

SQL – Structure Query Language is a well known common language for communicating with Relational Databases (RDBMS). It is not the only language I might add, having both used many years ago and just mentioned QUEL at a Looker Look and Tell event in New York. It has also been around since the 1970s making it; along with C; one of oldest in general use programming languages today.

SQL became an ANSI standard in 1986, and an ISO standard in 1987. The purpose of a standard is to provide commonality when communicating or exchanging information; in our case; a programming language communicating with a RDBMS. There have been several iterations of the standard as functionality and syntax improves. These are commonly referred to as SQL-86, SQL-89, SQL-92, SQL:1999, SQL:2003, SQL:2006, SQL:2008 and SQL:2011.

And so, with SQL being a standard it means that what we can do in PostgreSQL should translate to what we can do in MySQL.

SQL Communication

Both products provide a Command Line Interface (CLI) client tool for SQL communication, mysql for MySQL and psql for PostgreSQL. No surprises there. Both use by default the semicolon ; as a SQL statement terminator, and both CLI tools use \q as a means to quit and exit the tool. Certainly not a standard but great for syntax compatibility.

DDL Specification

Our journey begins with defining tables.

DROP TABLE

Both products SQL syntax support DROP TABLE. Infact, both support the DROP TABLE [IF EXISTS] syntax.

DROP TABLE donorschoose_projects;
DROP TABLE IF EXISTS donorschoose_projects;

CREATE TABLE

Both support CREATE TABLE.

Both support defining columns in the typical format <column_name> <datatype>, and both support the NOT NULL attribute. Talking about specific datatypes for columns is a topic on its own and so I discuss this later.

The PostgreSQL syntax was a table option WITHOUT OIDS which is not valid in MySQL. It is also obsolescent syntax in PostgreSQL 9.3. From the PostgreSQL manual “This optional clause specifies whether rows of the new table should have OIDs (object identifiers) assigned to them. The default is to have OIDs. Specifying WITHOUT OIDS allows the user to suppress generation of OIDs for rows of a table. This may be worthwhile for large tables … Specifying WITHOUT OIDS also reduces the space required to store the table on disk by 4 bytes per row of the table, thereby improving performance.”

In this example as this is just for testing, dropping the WITHOUT OIDS syntax creates a mutually compatible syntax.

Comments

Both MySQL and PostgreSQL support -- as an inline comment in an SQL statement. No need to strip those out.

ALTER TABLE

Both support ALTER TABLE ADD CONSTRAINT syntax which in our example is used to define the PRIMARY KEY, however while the syntax remains the same, the choice of datatype affects the outcome.

The following works in both products when the datatype is CHARACTER(32). More about CHARACTER() later.

ALTER TABLE donorschoose_projects ADD CONSTRAINT pk_donorschoose_projects PRIMARY KEY(_projectid);

In our example dataset, the primary key is defined with a TEXT datatype, and in MySQL this fails.

ERROR 1170 (42000): BLOB/TEXT column '_projectid' used in key specification without a key length

As the data in the dataset for primary keys by further analysis is indeed a 32 byte hexadecimal value, this is changed to CHARACTER(32) to be compatible for this data loading need. This however is an important key difference in any migration process with other data sets.

Side Note

Both products support the definition of the PRIMARY KEY in the CREATE TABLE syntax two different ways.

CREATE TABLE demo_pk1 (id character(32) NOT NULL PRIMARY KEY);
CREATE TABLE demo_pk2 (id character(32) NOT NULL, PRIMARY KEY(id));

CREATE INDEX

Both use CREATE INDEX syntax however with our sample dataset, this is the first observed difference in syntax with provided sample SQL statements.

PostgresSQL

CREATE INDEX projects_schoolid ON projects USING btree (_schoolid);

MySQL
The USING <type> qualifier must appear before the ON <table>.

CREATE INDEX USING btree projects_schoolid ON projects (_schoolid);

In both products USING btree is an optional syntax (for minimum compatibility) purposes so removing this provides a consistency.

Data Types

The following data types are defined in the PostgreSQL example data set. Each is discussed to identify a best fit in MySQL. For reference:

character

This data type is for a fixed width character field and requires a length attribute. MySQL supports CHARACTER(n) syntax for compatibility, however generally CHAR(n) is the preferred syntax. Indeed, PostgreSQL also supports CHAR(n).

The following showing both variants is valid in both products.

CREATE TABLE demo_character(c1 CHARACTER(1), c2 CHAR(1));

varchar/character varying

While this dataset does not use these datatypes, they are critical in the general conservations of character (aka string) types. This refers to a variable length string.

While character varying is not a valid MySQL syntax, varchar is compatible with both products.

CREATE TABLE demo_varchar(vc1 VARCHAR(10));

text

In PostgresSQL, text is used for variables of undefined length. The maximum length of a field is 1GB as stated in the FAQ.

In MySQL however TEXT only stores 2^16 characters (64K). The use of LONGTEXT is needed to support the full length capacity in PostgeSQL. This store 2^32 characters (~4GB).

Of all the complexity of this example dataset, the general use of text will be the most difficult to modify to a more applicable VARCHAR or TEXT datatype when optimizing in MySQL.

integer

PostgreSQL uses the integer datatype for a signed 4 byte integer value. MySQL supports the same syntax, however generally prefers to refer to the shorter INT syntax. Both products support both overall.

mysql> CREATE TABLE demo_integer(i1 INTEGER, i2 INT);
Query OK, 0 rows affected (0.11 sec)

mysql> INSERT INTO demo_integer VALUES (1,-1);
Query OK, 1 row affected (0.05 sec)

mysql> SELECT * FROM demo_integer;
+------+------+
| i1   | i2   |
+------+------+
|    1 |   -1 |
+------+------+
1 row in set (0.00 sec)
demo=# CREATE TABLE demo_integer(i1 INTEGER, i2 INT);
CREATE TABLE
demo=# INSERT INTO demo_integer VALUES (1,-1);
INSERT 0 1
demo=# SELECT * FROM demo_integer;
 i1 | i2
----+----
  1 | -1
(1 row)

And just to note the boundary of this data type.

mysql> TRUNCATE TABLE demo_integer;
Query OK, 0 rows affected (0.04 sec)

mysql> INSERT INTO demo_integer VALUES (2147483647, -2147483648);
Query OK, 1 row affected (0.04 sec)

mysql> SELECT * FROM demo_integer;
+------------+-------------+
| i1         | i2          |
+------------+-------------+
| 2147483647 | -2147483648 |
+------------+-------------+
1 row in set (0.00 sec)
demo=# TRUNCATE TABLE demo_integer;
TRUNCATE TABLE

demo=# INSERT INTO demo_integer VALUES (2147483647, -2147483648);
INSERT 0 1
demo=# SELECT * FROM demo_integer;
     i1     |     i2
------------+-------------
 2147483647 | -2147483648
(1 row)

The difference is in out-of-bounds value management, and here MySQL defaults suck. You can read my views at DP#4 The importance of using sql_mode.

demo=# TRUNCATE TABLE demo_integer;
TRUNCATE TABLE
demo=# INSERT INTO demo_integer VALUES (2147483647 + 1, -2147483648 - 1);
ERROR:  integer out of range
demo=# SELECT * FROM demo_integer;
 i1 | i2
----+----
(0 rows)
mysql> TRUNCATE TABLE demo_integer;
Query OK, 0 rows affected (0.04 sec)

mysql> INSERT INTO demo_integer VALUES (2147483647 + 1, -2147483648 - 1);
Query OK, 1 row affected, 2 warnings (0.07 sec)

mysql> SELECT * from demo_integer;
+------------+-------------+
| i1         | i2          |
+------------+-------------+
| 2147483647 | -2147483648 |
+------------+-------------+
1 row in set (0.00 sec)

While not in this dataset, both support the bigint data type. While the PostgreSQL docs indicate bigint is 8 bytes, testing with PostgresSQL 9.3 failed. Something to investigate more later.

demo=# CREATE TABLE demo_bigint(i1 BIGINT);
CREATE TABLE
demo=# INSERT INTO demo_bigint VALUES (2147483647 + 1), (-2147483648 - 1);
ERROR:  integer out of range
mysql> CREATE TABLE demo_bigint(i1 BIGINT);
Query OK, 0 rows affected (0.12 sec)

mysql> INSERT INTO demo_bigint VALUES (2147483647 + 1), (-2147483648 - 1);
Query OK, 2 rows affected (0.04 sec)
Records: 2  Duplicates: 0  Warnings: 0

mysql> SELECT * from demo_bigint;
+-------------+
| i1          |
+-------------+
|  2147483648 |
| -2147483649 |
+-------------+
2 rows in set (0.01 sec)

And for reference, both products support smallint, a 2-byte integer.

Each product has additional integer data types.

numeric

For a fixed-precision number, PostgreSQL uses numeric but supports decimal.It would not be surprising to know that MySQL uses DECIMAL and for compatibility supports NUMERIC.

This leads to a side-bar discussion on knowing your data-types for your product. In a recent interview for a MySQL Engineer, a candidate (with SQL Server experience) provided a code example defining the NUMERIC datatype. I knew it was technically valid in MySQL syntax, but never actually seen this in use. When I asked the candidate for what was the syntax commonly used for a fixed-precision datatype they were unable to answer.

real/double precision

This dataset does not include these data types, however for reference, PostgresSQL uses real for 4 bytes, and double precision for 8 bytes. MySQL uses float for 4 bytes, and double for 8 bytes. MySQL however supports both PostgreSQL syntax options, however PostgreSQL supports float, but not double.

demo=# CREATE TABLE demo_floatingpoint(f1 FLOAT, f2 REAL, d1 DOUBLE, d2 DOUBLE PRECISION);
ERROR:  type "double" does not exist
LINE 1: ...TE TABLE demo_floatingpoint(f1 FLOAT, f2 REAL, d1 DOUBLE, d2...

demo=# CREATE TABLE demo_floatingpoint(f1 FLOAT, f2 REAL, d2 DOUBLE PRECISION);
CREATE TABLE
mysql> CREATE TABLE demo_floatingpoint(f1 FLOAT, f2 REAL, d1 DOUBLE, d2 DOUBLE PRECISION);
Query OK, 0 rows affected (0.07 sec)

date

Both PostgreSQL and MySQL use the date data type.

timestamp

Both PostgreSQL and MySQL use the timestamp data type to store date/time values. However, there is a difference in both precision and implementation here.

In PostgresSQL, timestamp supports a date before EPOCH, while in MySQL it does not. MySQL uses the DATETIME datatype.

Using PostgresSQL timestamp and MySQL DATETIME, both support microsecond precision. MySQL however only started to provide this in MySQL 5.6.

A key difference in column definition is the PostgreSQL timestamp without time zone syntax, used in our example dataset. Analysis of data loading will determine the impact here.

boolean

SQL:1999 calls for a Boolean datatype, and both PostgreSQL and MySQL support defining a column as BOOLEAN. MySQL however implicitly converts this to a SIGNED TINYINT, and any future DDL viewing shows this reference.

When referencing boolean, in PostgreSQL WHERE column_name = TRUE or WHERE column_name = t retrieves a true value. In MySQL WHERE column_name = TRUE or WHERE column_name = 1. When you SELECT a boolean, in PostgresSQL the answer is ‘t’, in MySQL, the answer is 1.

demo=# CREATE TABLE demo_boolean (b1 boolean);
CREATE TABLE
demo=# INSERT INTO demo_boolean VALUES (TRUE),(FALSE);
INSERT 0 2
demo=# SELECT * FROM demo_boolean;
 b1
----
 t
 f
(2 rows)
mysql> CREATE TABLE demo_boolean (b1 boolean);
Query OK, 0 rows affected (0.11 sec)

mysql> INSERT INTO demo_boolean VALUES (TRUE),(FALSE);
Query OK, 2 rows affected (0.03 sec)
Records: 2  Duplicates: 0  Warnings: 0

mysql> SELECT * FROM demo_boolean;
+------+
| b1   |
+------+
|    1 |
|    0 |
+------+
2 rows in set (0.00 sec)

Other Data Types

Only the data types in this example have been reviewed.

Other syntax

In our sample SQL script, there is psql specific syntax to show a debugging line with \qecho .... For compatibility these are removed.

The loading of data with the \COPY <table_name> FROM PSTDIN WITH CSV HEADER is PostgreSQL specific and so loading the data is a future topic.

Finally, the VACUUM ANALYZE <table_name> command is also PostgreSQL specific and removed. This is a means effectively of optimizing and analyzing the table.

Both PostgreSQL and MySQL have an ANALYZE command, however the syntax is different, with the required TABLE keyword in MySQL.

PostgresSQL

ANALYZE donorschoose_projects;

ANALYZE TABLE donorschoose_projects;
ERROR:  syntax error at or near "table"

MySQL

ANALYZE donorschoose_projects;
ERROR 1064 (42000): You have an error in your SQL syntax;...

ANALYZE TABLE donorschoose_projects;

MySQL has an OPTIMIZE TABLE syntax, however while technically valid syntax this is not compatible with the default storage table InnoDB.

mysql> OPTIMIZE TABLE donorschoose_projects;
+----------------------------+----------+----------+-------------------------------------------------------------------+
| Table                      | Op       | Msg_type | Msg_text                                                          |
+----------------------------+----------+----------+-------------------------------------------------------------------+
| test.donorschoose_projects | optimize | note     | Table does not support optimize, doing recreate + analyze instead |
| test.donorschoose_projects | optimize | status   | OK                                                                |
+----------------------------+----------+----------+-------------------------------------------------------------------+
2 rows in set (0.32 sec)

Improving performance – A full stack problem

Improving the performance of a web system involves knowledge of how the entire technology stack operates and interacts. There are many simple and common tips that can provide immediate improvements for a website. Some examples include:

  • Using a CDN for assets
  • Compressing content
  • Making fewer requests (web, cache, database)
  • Asynchronous management
  • Optimizing your SQL statements
  • Have more memory
  • Using SSD’s for database servers
  • Updating your software versions
  • Adding more servers
  • Configuring your software correctly
  • … And the general checklist goes on

Understanding where to invest your energy first, knowing what the return on investment can be, and most importantly the measurement and verification of every change made is the difference between blind trial and error and a solid plan and process. Here is a great example for the varied range of outcome to the point about “Updating your software versions”.

On one project the MySQL database was reaching saturation, both the maximum number of database connections and maximum number of concurrent InnoDB transactions. The first is a configurable limit, the second was a hard limit of the very old version of the software. Changing the first configurable limit can have dire consequences, there is a tipping point, however that is a different discussion. A simple software upgrade of MySQL which had many possible improvement benefits, combined with corrected configuration specific for this new version made an immediate improvement. The result moved a production system from crashing consistently under load, to at least barely surviving under load. This is an important first step in improving the customer experience.

In the PHP application stack for the same project the upgrading of several commonly used frameworks including Slim and Twig by the engineering department seemed like a good idea. However applicable load testing and profiling (after it was deployed, yet another discussion point) found the impact was a 30-40% increase in response time for the application layer. This made the system worse, and cancelled out prior work to improve the system.

How to tune a system to support 100x load increase with no impact in performance takes knowledge, experience, planning, testing and verification.

The following summarized graphs; using New Relic monitoring as a means of representative comparison; shows three snapshots of the average response time during various stages of full stack tuning and optimization. This is a very simplified graphical view that is supported by more detailed instrumentation using different products, specifically with much finer granularity of hundreds of metrics.

These graphs represent the work undertaken for a system under peak load showing an average 2,000ms response time, to the same workload under 50ms average response time. That is a 40x improvement!

If your organization can benefit from these types of improvements feel free to Contact Me.

There are numerous steps to achieving this. A few highlights to show the scope of work you need to consider includes:

  • Knowing server CPU saturation verses single core CPU saturation.
  • Network latency detection and mitigation.
  • What are the virtualization mode options of virtual cloud instances?
  • Knowing the network stack benefits of different host operating systems.
  • Simulating production load is much harder than it sounds.
  • Profiling, Profiling, Profiling.
  • Instrumentation can be misleading. Knowing how different monitoring works with sampling and averaging.
  • Tuning the stack is an iterative process.
  • The simple greatest knowledge is to know your code, your libraries, your dependencies and how to optimize each specific area of your technology stack.
  • Not everything works, some expected wins provided no overall or observed benefits.
  • There is always more that can be done. Knowing when to pause and prioritize process optimizations over system optimizations.

These graphs show the improvement work in the application tier (1500ms to 35ms to 25ms) and the database tier (500ms to 125ms to 10ms) at various stages. These graphs do not show for example improvements made in DNS resolution, different CDNs, managing static content, different types and ways of compression, remove unwanted software components and configuration, standardized and consistent stack deployments using chef, and even a reduction in overall servers. All of these successes contributed to a better and more consistent user experience.

40x performance improvements in LAMP stack