Visualizing crowd sourcing data

At the closing keynote of the recent Strata Summit in New York, O’Reilly Media founder Tim O’Reilly showed a representation of crowd sourced data on Wikipedia of the 2011 Tōhoku earthquake and tsunami , showing a before and after picture of the page. While interesting, it did not represent what could be shown with the data.

Using the Wikipedia API’s, some features of my VisMarks startup I was able to create a better representation showing an animation of the article over time. While this Wikipedia Earthquake Animation (on a different page for loading) shows a representation of the first 1,000 revisions it highlights one cool way visualize crowd sourced data. Pay particular attention to the new language articles introduced, the images and table of contents as different types of data being added.

While the likes of Twitter and Facebook can provide a stream of information on an emerging event, Wikipedia is unique in that individuals contribute to a single source of combined information. This removes all the noise of duplication. It does not remove the CRUD, however as seen in this article this is quickly removed by others in the community.

It is also cool to see the size of the article grow over time. Below is a graph of the first 24 hours.

These are simple examples of using public API’s and simple tools (in this case, imagemagick,gnuplot and some shell scripts) to tell a story with data visualization.

Tagged with: Data Visualization

Related Posts

Creating a More Realistic Benchmark

Common benchmark approaches fall into two general categories, synthetic testing and realistic testing. You have the most generic operations from a synthetic test, starting with the most simple example using a single table, a single column, and for a single DML operation.

Read more

Testing, Benchmarking, Evaluating

Testing and benchmarking are widely used terms in software technology, each serving a distinct purpose and goal. With the increasing adoption of AI in software development, the term evaluating has become significant and with this the re-emergence of what is quality assurance.

Read more

Your Attack Vector Extends Beyond Production Systems

A common data security issue is the unprotected copying of production data to non-production environments without any redaction, masking, or filtering. This practice poses a serious risk. A malicious actor will target the weakest link in your infrastructure, including non-production accounts and the developer systems accessing them.

Read more