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Overview

● What is Aurora? 
○ Features & Capabilities

● Why consider Aurora?

● The various Aurora HA Setups

● Upsizing / Failover Example

● Aurora specific internals for MySQL architects & admins

● Other Aurora Features and Functionality



About Myself

● 20+ years MySQL experience in architecture and operations

● 15 years conference speaking

● Published author of 4 MySQL books

● Lead Data Architect/Engineer at Lifion by ADP

http://ronaldbradford.com 

http://ronaldbradford.com


What is AWS RDS Aurora?

● Amazon Web Services (AWS)
● Relational Database Service (RDS)

○ MySQL/MariaDB/Postgresql/Oracle/SQL Server

● Aurora 
○ MySQL and Postgres wire-compatible database built specifically for the AWS cloud

https://aws.amazon.com/rds/aurora

https://aws.amazon.com/rds/aurora


Aurora Features & Capabilities

● AWS managed RDBMS option

● Distributed cloud native architecture

● MySQL/Postgresql wire compatible

● A different transactional storage engine

● A different replication approach (read-free replicas)

● HA/Clustering/failover built-in by default



Aurora Features & Capabilities (2)

● Single writer/multiple readers 
○ can support multi-master

● Decoupled compute/storage infrastructure

● Highly durable/redundant storage via quorum

● Log based architecture

● Improved recovery capabilities

● Fast DDL



Aurora Improved Availability, Backup & Recovery

● Fast recovery capabilities (log append design)

● Database cloning

● Snapshot restore

● Backtrack

● Zero Downtime Patching (ZDP)

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Backtrack.html

https://aws.amazon.com/about-aws/whats-new/2019/11/amazon-aurora-mysql-5-7-now-supports-zero-downtime-patching/

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Backtrack.html
https://aws.amazon.com/about-aws/whats-new/2019/11/amazon-aurora-mysql-5-7-now-supports-zero-downtime-patching/


Aurora Cluster Architecture Features

A cluster has:

● Data in 3 Availability Zones (AZ)

● 2 copies per AZ

● 4 of 6 need for Quorum

● Route 53 Cluster & Instance Endpoints
○ Writer, Reader, Custom (Cluster), Instance

● Automatic Instance failover

● Replica Autoscaling ... (Diagram)
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Aurora Cluster - Single Instance

● Cluster
○ Storage in 3 AZs

○ Writer endpoint

○ Reader endpoint

● Single instance
○ In 1 AZ

○ Endpoint

○ Easily add additional instances

... (Diagram)
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Aurora Cluster - Multiple Instances

● Cluster

● Writer endpoint
○ Primary

● Reader endpoint
○ Load balanced across non primary instance(s)

● Multiple instance(s) 
○ AZs of choice

● Promotion Tiers
... (Diagram)
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Aurora Cluster - Multi-Master

● DB Instances are read & write
○ --engine-mode multimaster

Limitations

● Snapshots / ZDP / Load Balancing / Backtrack / Performance Insights

● Binary Logging

● Certain Datatypes

● Foreign Key CASCADE

● no fast DDL https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html


Multiple Aurora Clusters (1)

● Same region option

● Uses MySQL binary log replication
○ Needs to be enabled

○ GTID not support > 5.7

● Blue/Green deployments

● Shorter downtime upgrades

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.MySQL.html

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.MySQL.html
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Multiple Aurora Clusters Considerations

Source

Target

mysql> CALL mysql.rds_show_configuration;
mysql> CALL mysql.rds_set_configuration('binlog retention hours', 144);
mysql> CREATE USER 'repl_user'@'<domain_name>' IDENTIFIED BY '<password>';
mysql> GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'<domain_name>';
mysql> GRANT USAGE ON *.* TO 'repl_user'@'<domain_name>' REQUIRE SSL;

# Get position from snapshot restore
$ aws rds describe-events

mysql> CALL mysql.rds_set_external_master (
                                    host_name, host_port, replication_user_nam e,replication_user_password,
                                    mysql_binary_log_file_name, mysql_binary_log_file_location,  
ssl_encryptio n);
mysql> CALL mysql.rds_start_replication;
mysql> SHOW SLAVE STATUS;



aws rds describe-events

# Get position from snapshot restore
$ aws rds describe-events

{
    "Events": [
        {
            "EventCategories": [],
            "SourceType": "db-instance",
            "SourceArn": "arn:aws:rds:us-west-2:123456789012:db:sample-restored-instance",
            "Date": "2016-10-28T19:43:46.862Z",
            "Message": "Binlog position from crash recovery is mysql-bin-changelog.000003 4278",
            "SourceIdentifier": "sample-restored-instance"
        }
    ]
}



Multiple Aurora Clusters (2)

● Cross-region read replica
○ Support local read latency

● Improved DR 
○ Failover not failback

● Region migration path

● Requires binary log replication

● Incurs cross-region transfer costs $$$

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.CrossRegion.html

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.CrossRegion.html
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Aurora Global Cluster

● One primary region
○ Up to 5 read-only secondary regions

● Uses Aurora storage for replication
○ Lag < 1 second

● RPO = 0

● Blocks writes before failover

● Read-only cluster supports write-forwarding capabilities
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Maintenance Situations



Aurora Upgrades

● In-place upgrades (e.g. 2.09.1 to 2.09.2)
○ Whole process 5-10 minutes

○ DNS loss 10-20 seconds

○ ZDP (yet to see this work)

● Minor version (e.g. 2.07.3 to 2.09.2)
○ Very similar to in-place

● Major version (e.g. 2.09.2 to ?.?)
○ Yet to attempt

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.MajorVersionUpgrade.html 

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.MajorVersionUpgrade.html


Aurora Upsizing / Failover

● Instances can be different instance types
○ Read Endpoint moves to Writer during upsize

● Controlled failover
○ Writer endpoint moves to new promoted instance

○ What was writer becomes a reader

● DNS connectivity loss 10-20 seconds



Aurora Upsizing / Failover Commands
CLUSTER_ID="demo"
INSTANCE_ID="${CLUSTER_ID}-0"
aws rds describe-db-instances --db-instance-identifier ${INSTANCE_ID} | jq -r '.DBInstances[] | [.DBInstanceIdentifier,  
.DBInstanceClass, .DBInstanceStatus]'
[  "demo-0",  "db.r5.large",  "available" ]

aws rds modify-db-instance --db-instance-identifier ${INSTANCE_ID} --db-instance-class db.r5.4xlarge --apply-immediately

aws rds describe-db-instances --db-instance-identifier ${INSTANCE_ID} | jq -r '.DBInstances[] | [.DBInstanceIdentifier,  
.DBInstanceClass, .DBInstanceStatus]'
[  "demo-0", "db.r5.large", "modifying" ]

aws rds wait db-instance-available --db-instance-identifier ${INSTANCE_ID}
aws rds describe-db-instances --db-instance-identifier ${INSTANCE_ID} | jq -r '.DBInstances[] | [.DBInstanceIdentifier,  
.DBInstanceClass, .DBInstanceStatus]'
[  "demo-0",  "db.r5.4xlarge",  "available" ]

# Failover
aws rds describe-db-clusters --db-cluster-identifier ${CLUSTER_ID} | jq '.DBClusters[].DBClusterMembers'
 
aws rds failover-db-cluster --db-cluster-identifier ${CLUSTER_ID}

aws rds describe-db-clusters --db-cluster-identifier ${CLUSTER_ID} | jq '.DBClusters[].DBClusterMembers'



Aurora Upsizing / Failover Monitoring
# Endpoints
CLUSTER_ID="demo"
INSTANCE_ID="${CLUSTER_ID}-0"
aws rds describe-db-clusters --db-cluster-identifier ${CLUSTER_ID} | jq '.DBClusters[].DBClusterMembers'

# Cluster Status
while : ; do date ; aws rds describe-db-instances --db-instance-identifier ${INSTANCE_ID} | jq -r '.DBInstances[] |  
[.DBInstanceIdentifier, .DBInstanceClass, .DBInstanceStatus]'; sleep 5; done

# Instance endpoint availability (goes down during upsize)
MYSQL_HOST=$(aws rds describe-db-instances  --db-instance-identifier ${INSTANCE_ID} | jq -r '.DBInstances[0].Endpoint.Address');  
echo $MYSQL_HOST
 
while : ; do [ -n "${MYSQL_PASSWD}" ] && date; time mysql -h ${MYSQL_HOST} -u${MYSQL_USER} -p${MYSQL_PASSWD} -An --connect-timeout=1  
-e "SELECT NOW(),@@aurora_server_id, variable_value from information_schema.global_status where variable_name='uptime'"; sleep 1;  
done

# Cluster reader endpoint (fails over for new connections)
MYSQL_HOST=$(aws rds describe-db-clusters --db-cluster-identifier ${CLUSTER_ID} | jq -r '.DBClusters[0].ReaderEndpoint'); echo  
$MYSQL_HOST

while : ; do [ -n "${MYSQL_PASSWD}" ] && date; time mysql -h ${MYSQL_HOST} -u${MYSQL_USER} -p${MYSQL_PASSWD} -An --connect-timeout=1  
-e "SELECT NOW(),@@aurora_server_id, variable_value from information_schema.global_status where variable_name='uptime'"; sleep 1;  
done



Aurora Upsizing / Failover Timing Example
status=available 17:30:01 EDT 2021 18:05:12 EDT 2021

status=modifying 17:30:02  EDT 2021 18:05:19 EDT 2021

Reads flip to writer endpoint 17:32:48 UTC 2021 18:07:10 EDT 2021

Lose reader access 17:33:13 EDT 2021 18:07:42 EDT 2021

Accessible reader instance 17:37:33 EDT 2021 Uptime 19s 18:12:42 EDT 2021 Uptime 18s

status=configuring-enhanced-monitoring 17:39:28 EDT 2021 18:13:36 EDT 2021

status=modifying 17:40:35 EDT 2021 18:14:46 EDT 2021

status=storage-optimization 17:41:40 EDT 2021 N/A

status=available 17:53:53 EDT 2021 18:16:15 EDT 2021



Aurora Upsizing / Failover Graphs (CPU example)

First upsize Second upsize



Other Topics (for another time)



Additional RDS/Aurora Capabilities

● IAM Authentication for users
● Aurora Query Cache
● Aurora Parallel Query
● Aurora Monitoring
● DMS source & target

○ Replicate to/from RDS to RDS/Redshift/Kinesis etc

● Database Activity Streams
○ CDC to Kinesis

● Aurora specific tuning (binlog)
● RDS Proxy
● Autoscaling (ASG) read replicas
● ...

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-mysql-parallel-query.html

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/MonitoringAurora.html

https://aws.amazon.com/rds/proxy/

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/DBActivityStreams.html

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Integrating.AutoScaling.html

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-mysql-parallel-query.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/MonitoringAurora.html
https://aws.amazon.com/rds/proxy/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/DBActivityStreams.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Integrating.AutoScaling.html


Aurora Serverless

● For development & integration non 24x7 environments

● Cost versus performance benefits

● V1

● V2 (preview)

https://aws.amazon.com/rds/aurora/serverless/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless-2.how-it-works.html

https://aws.amazon.com/rds/aurora/serverless/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless-2.how-it-works.html


Chaos Aurora
SHOW VOLUME STATUS;

ALTER SYSTEM CRASH [ INSTANCE | DISPATCHER | NODE ];

ALTER SYSTEM SIMULATE percentage_of_failure PERCENT READ REPLICA FAILURE

    [ TO ALL | TO "replica name" ]

    FOR INTERVAL quantity { YEAR | QUARTER | MONTH | WEEK | DAY | HOUR | MINUTE | SECOND };

ALTER SYSTEM SIMULATE percentage_of_failure PERCENT DISK FAILURE

    [ IN DISK index | NODE index ]

    FOR INTERVAL quantity { YEAR | QUARTER | MONTH | WEEK | DAY | HOUR | MINUTE | SECOND };

ALTER SYSTEM SIMULATE percentage_of_failure PERCENT DISK CONGESTION

    BETWEEN minimum AND maximum MILLISECONDS

    [ IN DISK index | NODE index ]

    FOR INTERVAL quantity { YEAR | QUARTER | MONTH | WEEK | DAY | HOUR | MINUTE | SECOND };



Aurora under the hood

Quorums

https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-and-correlated-failure/

https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-reads-and-mutating-state/

https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-reducing-costs-using-quorum-sets/

https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-membership/ 

https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-and-correlated-failure/
https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-reads-and-mutating-state/
https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-reducing-costs-using-quorum-sets/
https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-membership/


Conclusion



Conclusion

● Managed services helps less resourced teams

● Monitoring cost is important

● Review performance between native/ec2/rds/aurora MySQL installations

● With managed services, some existing actions are limited/restricted

● HA infrastructure/ failover / upgrades are built-in capabilities

Slides: 
http://ronaldbradford.com/blog/understanding-aws-rds-aurora-capabilities-2021-05-13/

http://ronaldbradford.com/blog/understanding-aws-rds-aurora-capabilities-2021-05-13/

