
Understanding AWS RDS
Aurora Capabilities

Percona Live Online
May 2021

Ronald Bradford - http://ronaldbradford.com

Slides - https://j.mp/RDSAuroraPL21

Overview

● What is Aurora?
○ Features & Capabilities

● Why consider Aurora?

● The various Aurora HA Setups

● Upsizing / Failover Example

● Aurora specific internals for MySQL architects & admins

● Other Aurora Features and Functionality

About Myself

● 20+ years MySQL experience in architecture and operations

● 15 years conference speaking

● Published author of 4 MySQL books

● Lead Data Architect/Engineer at Lifion by ADP

http://ronaldbradford.com

http://ronaldbradford.com

What is AWS RDS Aurora?

● Amazon Web Services (AWS)
● Relational Database Service (RDS)

○ MySQL/MariaDB/Postgresql/Oracle/SQL Server

● Aurora
○ MySQL and Postgres wire-compatible database built specifically for the AWS cloud

https://aws.amazon.com/rds/aurora

https://aws.amazon.com/rds/aurora

Aurora Features & Capabilities

● AWS managed RDBMS option

● Distributed cloud native architecture

● MySQL/Postgresql wire compatible

● A different transactional storage engine

● A different replication approach (read-free replicas)

● HA/Clustering/failover built-in by default

Aurora Features & Capabilities (2)

● Single writer/multiple readers
○ can support multi-master

● Decoupled compute/storage infrastructure

● Highly durable/redundant storage via quorum

● Log based architecture

● Improved recovery capabilities

● Fast DDL

Aurora Improved Availability, Backup & Recovery

● Fast recovery capabilities (log append design)

● Database cloning

● Snapshot restore

● Backtrack

● Zero Downtime Patching (ZDP)

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Backtrack.html

https://aws.amazon.com/about-aws/whats-new/2019/11/amazon-aurora-mysql-5-7-now-supports-zero-downtime-patching/

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Backtrack.html
https://aws.amazon.com/about-aws/whats-new/2019/11/amazon-aurora-mysql-5-7-now-supports-zero-downtime-patching/

Aurora Cluster Architecture Features

A cluster has:

● Data in 3 Availability Zones (AZ)

● 2 copies per AZ

● 4 of 6 need for Quorum

● Route 53 Cluster & Instance Endpoints
○ Writer, Reader, Custom (Cluster), Instance

● Automatic Instance failover

● Replica Autoscaling ... (Diagram)

Availability Zone 1 Availability Zone 2

 AWS Region

 VPC

Availability Zone 3

Cluster Volume

Cluster

Aurora Cluster - Single Instance

● Cluster
○ Storage in 3 AZs

○ Writer endpoint

○ Reader endpoint

● Single instance
○ In 1 AZ

○ Endpoint

○ Easily add additional instances

... (Diagram)

Availability Zone 1 Availability Zone 2

 AWS Region

 VPC

Availability Zone 3

Cluster Volume

Cluster

Availability Zone 1 Availability Zone 2

 AWS Region

 VPC

Availability Zone 3

Cluster Volume

Primary

Writes Reads

Cluster with Single Instance

Aurora Cluster - Multiple Instances

● Cluster

● Writer endpoint
○ Primary

● Reader endpoint
○ Load balanced across non primary instance(s)

● Multiple instance(s)
○ AZs of choice

● Promotion Tiers
... (Diagram)

Availability Zone 1

 AWS Region

 VPC

Availability Zone 2 Availability Zone 3

Cluster Volume

Primary

Writes Reads

Cluster with Single Instance

Availability Zone 1 Availability Zone 2

 AWS Region

 VPC

Availability Zone 3

Cluster Volume

Primary Replica Tier 0 Replica Tier 1

Writes Reads Reads Reads

Cluster with Multiple Instances

Aurora Cluster - Multi-Master

● DB Instances are read & write
○ --engine-mode multimaster

Limitations

● Snapshots / ZDP / Load Balancing / Backtrack / Performance Insights

● Binary Logging

● Certain Datatypes

● Foreign Key CASCADE

● no fast DDL https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html

Multiple Aurora Clusters (1)

● Same region option

● Uses MySQL binary log replication
○ Needs to be enabled

○ GTID not support > 5.7

● Blue/Green deployments

● Shorter downtime upgrades

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.MySQL.html

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.MySQL.html

 AWS Region

 VPC

 Aurora Cluster

Cluster with Single Instance

 AWS Region

 VPC

 Aurora Cluster

 Aurora Cluster

Two separate clusters

 Aurora Cluster

 Aurora Cluster

 AWS Region

 VPC

MySQL Replication

Two separate clusters with binlog replication

Multiple Aurora Clusters Considerations

Source

Target

mysql> CALL mysql.rds_show_configuration;
mysql> CALL mysql.rds_set_configuration('binlog retention hours', 144);
mysql> CREATE USER 'repl_user'@'<domain_name>' IDENTIFIED BY '<password>';
mysql> GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'<domain_name>';
mysql> GRANT USAGE ON *.* TO 'repl_user'@'<domain_name>' REQUIRE SSL;

Get position from snapshot restore
$ aws rds describe-events

mysql> CALL mysql.rds_set_external_master (
 host_name, host_port, replication_user_nam e,replication_user_password,
 mysql_binary_log_file_name, mysql_binary_log_file_location,
ssl_encryptio n);
mysql> CALL mysql.rds_start_replication;
mysql> SHOW SLAVE STATUS;

aws rds describe-events

Get position from snapshot restore
$ aws rds describe-events

{
 "Events": [
 {
 "EventCategories": [],
 "SourceType": "db-instance",
 "SourceArn": "arn:aws:rds:us-west-2:123456789012:db:sample-restored-instance",
 "Date": "2016-10-28T19:43:46.862Z",
 "Message": "Binlog position from crash recovery is mysql-bin-changelog.000003 4278",
 "SourceIdentifier": "sample-restored-instance"
 }
]
}

Multiple Aurora Clusters (2)

● Cross-region read replica
○ Support local read latency

● Improved DR
○ Failover not failback

● Region migration path

● Requires binary log replication

● Incurs cross-region transfer costs $$$

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.CrossRegion.html

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.CrossRegion.html

 AWS Region

 VPC

 Aurora Cluster

 AWS Region

 VPC

 Aurora Cluster

MySQL
 Replication

Aurora Global Cluster

● One primary region
○ Up to 5 read-only secondary regions

● Uses Aurora storage for replication
○ Lag < 1 second

● RPO = 0

● Blocks writes before failover

● Read-only cluster supports write-forwarding capabilities

 VPC

 AWS Region

 Aurora Cluster

Cluster Volume

 VPC

 AWS Region

 Aurora Global Cluster

 Aurora Cluster

Cluster Volume

 VPC

 AWS Region

 AWS Region

 VPC

 Aurora Global Cluster

 Aurora Cluster

Cluster Volume

 Aurora Cluster

Cluster Volume

 VPC

 AWS Region

 AWS Region

 VPC

 Aurora Global Cluster

 Aurora Cluster

Cluster Volume

 Aurora Cluster

Cluster Volume

 VPC

 AWS Region

 AWS Region

 VPC

 Aurora Global Cluster

 Aurora Cluster

Cluster Volume

 Aurora Cluster

Cluster Volume

Write
Forwarding

Maintenance Situations

Aurora Upgrades

● In-place upgrades (e.g. 2.09.1 to 2.09.2)
○ Whole process 5-10 minutes

○ DNS loss 10-20 seconds

○ ZDP (yet to see this work)

● Minor version (e.g. 2.07.3 to 2.09.2)
○ Very similar to in-place

● Major version (e.g. 2.09.2 to ?.?)
○ Yet to attempt

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.MajorVersionUpgrade.html

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.MajorVersionUpgrade.html

Aurora Upsizing / Failover

● Instances can be different instance types
○ Read Endpoint moves to Writer during upsize

● Controlled failover
○ Writer endpoint moves to new promoted instance

○ What was writer becomes a reader

● DNS connectivity loss 10-20 seconds

Aurora Upsizing / Failover Commands
CLUSTER_ID="demo"
INSTANCE_ID="${CLUSTER_ID}-0"
aws rds describe-db-instances --db-instance-identifier ${INSTANCE_ID} | jq -r '.DBInstances[] | [.DBInstanceIdentifier,
.DBInstanceClass, .DBInstanceStatus]'
["demo-0", "db.r5.large", "available"]

aws rds modify-db-instance --db-instance-identifier ${INSTANCE_ID} --db-instance-class db.r5.4xlarge --apply-immediately

aws rds describe-db-instances --db-instance-identifier ${INSTANCE_ID} | jq -r '.DBInstances[] | [.DBInstanceIdentifier,
.DBInstanceClass, .DBInstanceStatus]'
["demo-0", "db.r5.large", "modifying"]

aws rds wait db-instance-available --db-instance-identifier ${INSTANCE_ID}
aws rds describe-db-instances --db-instance-identifier ${INSTANCE_ID} | jq -r '.DBInstances[] | [.DBInstanceIdentifier,
.DBInstanceClass, .DBInstanceStatus]'
["demo-0", "db.r5.4xlarge", "available"]

Failover
aws rds describe-db-clusters --db-cluster-identifier ${CLUSTER_ID} | jq '.DBClusters[].DBClusterMembers'

aws rds failover-db-cluster --db-cluster-identifier ${CLUSTER_ID}

aws rds describe-db-clusters --db-cluster-identifier ${CLUSTER_ID} | jq '.DBClusters[].DBClusterMembers'

Aurora Upsizing / Failover Monitoring
Endpoints
CLUSTER_ID="demo"
INSTANCE_ID="${CLUSTER_ID}-0"
aws rds describe-db-clusters --db-cluster-identifier ${CLUSTER_ID} | jq '.DBClusters[].DBClusterMembers'

Cluster Status
while : ; do date ; aws rds describe-db-instances --db-instance-identifier ${INSTANCE_ID} | jq -r '.DBInstances[] |
[.DBInstanceIdentifier, .DBInstanceClass, .DBInstanceStatus]'; sleep 5; done

Instance endpoint availability (goes down during upsize)
MYSQL_HOST=$(aws rds describe-db-instances --db-instance-identifier ${INSTANCE_ID} | jq -r '.DBInstances[0].Endpoint.Address');
echo $MYSQL_HOST

while : ; do [-n "${MYSQL_PASSWD}"] && date; time mysql -h ${MYSQL_HOST} -u${MYSQL_USER} -p${MYSQL_PASSWD} -An --connect-timeout=1
-e "SELECT NOW(),@@aurora_server_id, variable_value from information_schema.global_status where variable_name='uptime'"; sleep 1;
done

Cluster reader endpoint (fails over for new connections)
MYSQL_HOST=$(aws rds describe-db-clusters --db-cluster-identifier ${CLUSTER_ID} | jq -r '.DBClusters[0].ReaderEndpoint'); echo
$MYSQL_HOST

while : ; do [-n "${MYSQL_PASSWD}"] && date; time mysql -h ${MYSQL_HOST} -u${MYSQL_USER} -p${MYSQL_PASSWD} -An --connect-timeout=1
-e "SELECT NOW(),@@aurora_server_id, variable_value from information_schema.global_status where variable_name='uptime'"; sleep 1;
done

Aurora Upsizing / Failover Timing Example
status=available 17:30:01 EDT 2021 18:05:12 EDT 2021

status=modifying 17:30:02 EDT 2021 18:05:19 EDT 2021

Reads flip to writer endpoint 17:32:48 UTC 2021 18:07:10 EDT 2021

Lose reader access 17:33:13 EDT 2021 18:07:42 EDT 2021

Accessible reader instance 17:37:33 EDT 2021 Uptime 19s 18:12:42 EDT 2021 Uptime 18s

status=configuring-enhanced-monitoring 17:39:28 EDT 2021 18:13:36 EDT 2021

status=modifying 17:40:35 EDT 2021 18:14:46 EDT 2021

status=storage-optimization 17:41:40 EDT 2021 N/A

status=available 17:53:53 EDT 2021 18:16:15 EDT 2021

Aurora Upsizing / Failover Graphs (CPU example)

First upsize Second upsize

Other Topics (for another time)

Additional RDS/Aurora Capabilities

● IAM Authentication for users
● Aurora Query Cache
● Aurora Parallel Query
● Aurora Monitoring
● DMS source & target

○ Replicate to/from RDS to RDS/Redshift/Kinesis etc

● Database Activity Streams
○ CDC to Kinesis

● Aurora specific tuning (binlog)
● RDS Proxy
● Autoscaling (ASG) read replicas
● ...

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-mysql-parallel-query.html

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/MonitoringAurora.html

https://aws.amazon.com/rds/proxy/

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/DBActivityStreams.html

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Integrating.AutoScaling.html

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-mysql-parallel-query.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/MonitoringAurora.html
https://aws.amazon.com/rds/proxy/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/DBActivityStreams.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Integrating.AutoScaling.html

Aurora Serverless

● For development & integration non 24x7 environments

● Cost versus performance benefits

● V1

● V2 (preview)

https://aws.amazon.com/rds/aurora/serverless/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless-2.how-it-works.html

https://aws.amazon.com/rds/aurora/serverless/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless-2.how-it-works.html

Chaos Aurora
SHOW VOLUME STATUS;

ALTER SYSTEM CRASH [INSTANCE | DISPATCHER | NODE];

ALTER SYSTEM SIMULATE percentage_of_failure PERCENT READ REPLICA FAILURE

 [TO ALL | TO "replica name"]

 FOR INTERVAL quantity { YEAR | QUARTER | MONTH | WEEK | DAY | HOUR | MINUTE | SECOND };

ALTER SYSTEM SIMULATE percentage_of_failure PERCENT DISK FAILURE

 [IN DISK index | NODE index]

 FOR INTERVAL quantity { YEAR | QUARTER | MONTH | WEEK | DAY | HOUR | MINUTE | SECOND };

ALTER SYSTEM SIMULATE percentage_of_failure PERCENT DISK CONGESTION

 BETWEEN minimum AND maximum MILLISECONDS

 [IN DISK index | NODE index]

 FOR INTERVAL quantity { YEAR | QUARTER | MONTH | WEEK | DAY | HOUR | MINUTE | SECOND };

Aurora under the hood

Quorums

https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-and-correlated-failure/

https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-reads-and-mutating-state/

https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-reducing-costs-using-quorum-sets/

https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-membership/

https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-and-correlated-failure/
https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-reads-and-mutating-state/
https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-reducing-costs-using-quorum-sets/
https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-membership/

Conclusion

Conclusion

● Managed services helps less resourced teams

● Monitoring cost is important

● Review performance between native/ec2/rds/aurora MySQL installations

● With managed services, some existing actions are limited/restricted

● HA infrastructure/ failover / upgrades are built-in capabilities

Slides:
http://ronaldbradford.com/blog/understanding-aws-rds-aurora-capabilities-2021-05-13/

http://ronaldbradford.com/blog/understanding-aws-rds-aurora-capabilities-2021-05-13/

