A surprising excursion through the astonishing world of math

Ronald Bradford

A Review

- "Here's looking at Euclid" by Alex Bellos http://www.alexbellos.com/

A SURPRISING EXCURSION THROUGH THE ASTONISHING WORLD OF MATH
<- In US

Rest of the world ->

Counting

- We use Base 10 for counting, likely for 10 physical digits
- 1,2,3,4,5,6,7,8,9,10
- Historically there was no representation for 0
- No roman numeral for 0

Metric System (i.e. Base 10)

- $10 \times 10 \times 10$ (1000) millimetres in a metre
- 1000 metres in a kilometre
- 1000 grams in a kilogram
- 1000 milliletres in a litre
- 100 degrees between water melting and boiling $(0-100 \mathrm{C})$ hitps://en.wikipedia.org/wiki/Metric system

Metric System (i.e. Base 10)

- $10 \times 10 \times 10$ (1000) millimetres in a metre
- 1000 metres in a kilometre
- 1000 grams in a kilogram
- 1000 milliletres in a litre
- 100 degrees between water melting and hitps://en.wikipedia.org/wiki/Metric system

US Customary System

- 12 inches in a foot
- 3 feet in a yard
- 1760 feet in a mile
- 16 ounces in a pound
- 2000 pounds in a short ton, 2240 in a long ton
- 180 degrees between water melting and boiling (32-212) hitps://en.wikipedia.org/wiki/United States customary units

US Customary System

- 12 inches in a foot
- 3 feet in a yard
- 1760 feet in a mil
- 16 ounces in a poui
- 2000 pounds in a shcrt ton, 2240 in a long ion
- 180 degrees between water melting and boiling (32-212) hitps://en.wikipedia.org/wiki/United States customary units

US Customary System

- 12 inches in a foot
- 3 feet in a yard
- 1760 feet in a mile
- 16 ounces in a pound
- 2000 pounds in a short ton, 2240 in a long ton
- 180 degrees between water melting and boiling (32-212) hitps://en.wikipedia.org/wiki/United States customary units

Base 10 words

- Most Western European Languages
- Twenty-one, Twenty-two
- Not tenty-one, tenty-two, but Eleven, Twelve.
- "Between 10 and 20 is a mess"
- German is even more irregular than English
- Chineses, Japanese \& Korean
- Numbers words follow a regular pattern

Base 12

- More divisibility 2,3,4,6 verses 2,5

Fraction of 100	Decimal	Dozenal
One	100	100
Half	50	60
Third	$33.333 \ldots$	40
Quarter	25	30
Fifth	20	$24 ; 97 \ldots$ [The semicolon is the "dozenal point."]
Sixth	$16.666 \ldots$	20
Seventh	14.285	$18 ; 6 \times 35 \ldots$
Eighth	12.5	16
Ninth	$11.111 \ldots$	14
Tenth	10	$12 ; 497 \ldots$
Eleventh	$9.09 \ldots$	$11 ; 11 \ldots$
Twelfth	$8.333 \ldots$	10

Base 12

Base 12

- We have 12 months in the year

2016

Base 12

- We have 12 months in the year
- We have 12 hours on a clock

Base 12

- We have 12 months in the year
- We have 12 hours on a clock
- We have 12×5 minute intervals

Base 12

- We have 12 months in the year
- We have 12 hours on a clock
- We have 12×5 minute intervals
- 5x12x12x2 (Base 12/Base 10)

Base 12

- We have 12 months in the year
- We have 12 hours on a clock
- We have 12×5 minute intervals
- 5x12x12x2 (Base 12/Base 10)
- Phones have 12 digits

Base 12

- We have 12 months in the year
- We have 12 hours on a clock
- We have 12×5 minute intervals - 5x12x12x2 (Base 12/Base 10)
- Phones have 12 digits
- There are 12 eggs in a carton

Base 20

- Historians interest
- The French for eighty is "quatre-vingtes"
- Which is "four-twenties"

Base 2 / Base 16

- Our world is
- 101010
- 0123456789ABCEDF

Pythagoras and squares

- The triangles guy (6th century B.C.)
- The square of a number ' n ' is the sum of the first ' n ' odd numbers.
- e.g. $4 \times 4=1+3+5+7$

Pythagoras and squares

- The triangles guy (6th cer
- The square of a number ' 1 first ' n ' odd numbers.
- e.g. $4 \times 4=1+3+5+7$

Integer Sequences

- Online Encyclopedia of Integer Sequences
http://oeis.org/
- Odd numbers - http://oeis.org/A005408
- Prime numbers (< 20th) - http://oeis.org/A008578
- Prime numbers http://oeis.org/A000040
- Tribonacci numbers http://oeis.org/A000073
- Happy Numbers - https://oeis.org/A007770

Error Code: 139

- 34th prime number
- twin prime with 137
- sum of 5 consecutive primes $(19+23+29+31+37)$
- 10th term in Euclid-Mullin sequence
- 139 is a happy number
hitps://en.wikjpedia.org/wiki/139 (number)

Error Code: 149

- 149 is the 35 th prime number
- twin prime
- 149 is a emirp, because 941 is also prime
- 149 is a strong prime
- 149 is an irregular prime
- 149 is an Eisenstein prime
- 149 is a tribonacci number, being the sum of the three preceding terms, $24,44,81$

What is prime?

- Is 1 prime?
- https://primes.utm.edu/notes/faq/one.html

An integer greater than one is called a prime number if its only positive divisors (factors) are one and itself.

Origami

- Cutting edge of math
- Manufacturing - How many folds with one cut
- http://www.foldscope.com/ - microscope for $\$ 1$
- Origami and Egyptian Triangles (The Haga theorem)
https://en.wikipedia.org/wiki/Mathematics of paper folding

Origami

Pi (π)

$\operatorname{Pi}(\pi)$

$$
\frac{1}{\pi}=\sum_{n=0}^{\infty}(-1)^{n} \times \frac{(6 n)!}{(3 n)!n!^{3}} \times \frac{163096908+6541681608 n}{(262537412640768000)^{n+1 / 2}}
$$

$$
\frac{1}{\pi}=\sum_{n=0}^{\infty}(-1)^{n} \times \frac{(6 n)!}{(3 n)!n!^{3}} \times \frac{163096908+6541681608 n}{(262537412640768000)^{n+1 / 2}}
$$

$$
\frac{1}{\pi}=\frac{2 \sqrt{2}}{9801} \sum_{n=0}^{\infty} \frac{(4 n)!(1103+26390 n)}{(n!)^{4} 396^{4 n}}
$$

$\mathrm{Pi}(\pi)$

$$
\frac{1}{\pi}=\sum_{n=0}^{\infty}(-1)^{n} \times \frac{(6 n)!}{(3 n)!n!^{3}} \times \frac{163096908+6541681608 n}{(262537412640768000)^{n+1 / 2}}
$$

$$
\frac{1}{\pi}=\frac{2 \sqrt{2}}{9801} \sum_{n=0}^{\infty} \frac{(4 n)!(1103+26390 n)}{(n!)^{4} 396^{4 n}}
$$

$$
\frac{\pi}{4}=\frac{1}{2}+\frac{1}{5}+\frac{1}{8}-\left[\frac{\left(\frac{1}{2}\right)^{3}}{3}+\frac{\left(\frac{1}{5}\right)^{3}}{3}+\frac{\left(\frac{1}{8}\right)^{3}}{3}\right]+\left[\frac{\left(\frac{1}{2}\right)^{5}}{5}+\frac{\left(\frac{1}{5}\right)^{5}}{5}+\frac{\left(\frac{1}{8}\right)^{5}}{5}\right]-\ldots
$$

Pi (π)

$$
\frac{\mathrm{pi}}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9} \ldots
$$

$$
\mathrm{pi}=4-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\frac{4}{9} \ldots
$$

$$
4 \rightarrow 2.667 \rightarrow 3.467 \rightarrow 2.895 \rightarrow 3.340 \rightarrow \ldots
$$

Are Pi digits random?

118

HERE'S LOOKING AT EUCLID

of pi with a "poker test": take five consecutive digits and consider them as if they are a poker hand.

Type of hand	Actual occurrence	Expected occurrence
All digits different	604,976	604,800
One pair, three different	$1,007,151$	$1,008,000$
Two pairs	216,520	216,000
Three of a kind	144,375	144,000
Full house	17,891	18,000
Four of a kind	8,887	9,000
Five of a kind	200	200

The right column is how many times we would expect to see the poker hands if pi was normal and each decimal place had an equal chance of being occupied by any digit. The results are well within the boundaries of what we would expect. Each pattern of numbers seems to appear with the correct frequency as it would had each decimal place been randomly generated.

Math is everywhere in IT

- Algorithms (e.g. sorting, Big O)
- 2D/3D Geometry (e.g. GIS)
- Cryptography (e.g. prime numbers)
- Compression
- Image processing (e.g. animation)
- Data Structures (e.g. BTree, SQL)

Math Online

- http://mathoverflow.net/
- http://www.wolframalpha.com/
- http://mathworld.wolfram.com/TribonacciNumber.html
- http://uniquation.com/

Emulating our humor

- Escape Velocity

$$
\begin{aligned}
& \text { I think I've found } \\
& \text { a way out of here. } \\
& \qquad v_{e}=\sqrt{\frac{2 G M}{r}}
\end{aligned}
$$

https://en.wikipedia.org/wiki/Escape velocity

Favorite Fridge Magnet

Trivia Programming Question

Trivia Programming Question

$$
\begin{aligned}
& \text { for } i=0 \ldots 9 ; \\
& \text { for } j=0.9 ; \\
& \text { for } k=0.9 ; \\
& \text { do something; }
\end{aligned}
$$

Trivia Programming Question

$$
\begin{aligned}
& \text { for } i=0 \ldots 9 ; \\
& \text { for } j=0.9 ; \\
& \text { for } k=0.9 ; \\
& \text { do something; }
\end{aligned}
$$

- Fortran
- Integer variables start with i-n first letter

