Utilizing OpenStack Trove DBaaS for deployment management

Trove is used for self service provisioning and lifecycle management for relational and non-relational databases in an OpenStack cloud. Trove provides a RESTful API interface that is same regardless of the type of database. CLI tools and a web UI via Horizon are also provided wrapping Trove API requests.

In simple terms. You are a MySQL shop. You run a replication environment with daily backups and failover capabilities which you test and verify regularly. You have defined DBA and user credentials ACL’s across dev, test and prod environments. Now there is a request for using MongoDB or Cassandra, the engineering department has not decided but they want to evaluate the capabilities. How long as a operator does it take to acquire the software, install, configure, setup replication, backups, ACLs and enable the engineering department to evaluate the products?

With Trove DBaaS this complexity is eliminated due to a consistent interface to perform the provisioning, configuration, HA, B&R, ACL across other products the exact same way you perform these tasks for MySQL. This enables operations to be very proactive to changing technology requests supporting digital transformation strategies.

Enabling this capability is not an automatic approval of a new technology stack. It is important that strategic planning, support and management is included in the business strategy to understanding the DBaaS capability for your organization. Examples of operations due diligence would include how to integrate these products into your monitoring, logging and alerting systems. Determine what additional disk storage requirements may be needed. Test, verify and time recovery strategies.

Trove specifically leverages several other OpenStack services for source image and instance management. Each trove guest image includes a base operating system, the applicable database software and a database technology specific trove guest agent. This agent is the intelligence that knows the specific syntax and version needs to perform the tasks. The agent is also the communication mechanism between Trove and the running nova instance.

Trove is a total solution manager for the instance running your chosen database. Instances have no ssh, telnet or other general access. The only access is via the SQL communication via the defined ports, e.g. 3306 for MySQL.

The Trove lifecycle management covers the provisioning, management, security, configuration and tuning of your database. Amrith Kumar in a recent presentation at the NYC Postgres meetup provides a good description of the specifics.

Trove is capable of describing and supporting clustering and replication topologies for the various data stores. It can support backup and restore, failover and resizing of clusters without the operator needing to know the specific syntax of complexities of a database product they are unfamiliar with.

A great example is the subtle difference in MySQL replication management using GTID’s between MySQL and MariaDb. To the developer, the interaction between MySQL and MariaDB via SQL is the same, the management of a replication topology is not identical, but is managed by the Trove guest agent. To the operator, the management is the same.

Also in his presentation, Kumar described Tesora, an enterprise class Trove service provided with a number of important additional features. Tesora supports additional database products including Oracle and DB2Express as well as commercial versions for Oracle MySQL, EnterpriseDB, Couchbase, Datastax, and mongoDB. Using the Horizon UI customizations with pre-defined trove instances greatly reduces the work needed for operators and deployers to build there own.

A Cassandra twitter clone

Following my successful Cassandra Cluster setup and having a potential client example to work with running Ruby On Rails (RoR), I came across the following examples in Ruby.

Not being a ruby developer, I thought it was time to investigate further. Starting first on Mac OS X 10.5, I found the first line example of installing cassandra via gem unsuccessful.

$ gem install cassandra
Updating metadata for 1 gems from http://gems.rubyforge.org
.
complete
ERROR:  could not find cassandra locally or in a repository

Some more reading highlights Otherwise, you need to install Java 1.6, Git 1.6, Ruby, and Rubygems in some reasonable way.

In case you didn’t read my earlier posts, Java 6 is installed, but not the default.

export JAVA_HOME=/System/Library/Frameworks/JavaVM.framework/Versions/1.6/Home
export PATH=$JAVA_HOME/bin:$PATH

I achieved installing RubyGems via Installing Ruby on Rails on Mac OS X.

$ sudo gem install rubygems-update

Updating metadata for 1 gems from http://gems.rubyforge.org
.
complete
Successfully installed rubygems-update-1.3.6
1 gem installed
Installing ri documentation for rubygems-update-1.3.6...
Installing RDoc documentation for rubygems-update-1.3.6...
Could not find main page README
Could not find main page README
Could not find main page README
Could not find main page README

$ sudo update_rubygems
RubyGems 1.3.6 installed

=== 1.3.6 / 2010-02-17

NOTE:

http://rubygems.org is now the default source for downloading gems.

You may have sources set via ~/.gemrc, so you should replace
http://gems.rubyforge.org with http://rubygems.org

http://gems.rubyforge.org will continue to work for the forseeable future.

New features:

* `gem` commands
  * Added `gem push` and `gem owner` for interacting with modern/Gemcutter
    sources
  * `gem dep` now supports --prerelease.
  * `gem fetch` now supports --prerelease.
  * `gem server` now supports --bind.  Patch #27357 by Bruno Michel.
  * `gem rdoc` no longer overwrites built documentation.  Use --overwrite
    force rebuilding.  Patch #25982 by Akinori MUSHA.
* Captial letters are now allowed in prerelease versions.

Bug fixes:

* Development deps are no longer added to rubygems-update gem so older
  versions can update sucessfully.
* Installer bugs:
  * Prerelease gems can now depend on non-prerelease gems.
  * Development dependencies are ignored unless explicitly needed.  Bug #27608
    by Roger Pack.
* `gem` commands
  * `gem which` now fails if no paths were found.  Adapted patch #27681 by
    Caio Chassot.
  * `gem server` no longer has invalid markup.  Bug #27045 by Eric Young.
  * `gem list` and friends show both prerelease and regular gems when
    --prerelease --all is given
* Gem::Format no longer crashes on empty files.  Bug #27292 by Ian Ragsdale.
* Gem::GemPathSearcher handles nil require_paths. Patch #27334 by Roger Pack.
* Gem::RemoteFetcher no longer copies the file if it is where we want it.
  Patch #27409 by Jakub Šťastný.

Deprecation Notices:

* lib/rubygems/timer.rb has been removed.
* Gem::Dependency#version_requirements is deprecated and will be removed on or
  after August 2010.
* Bulk index update is no longer supported.
* Gem::manage_gems was removed in 1.3.3.
* Time::today was removed in 1.3.3.


------------------------------------------------------------------------------

RubyGems installed the following executables:
	/System/Library/Frameworks/Ruby.framework/Versions/1.8/usr/bin/gem

NOTE: This second command took over 60 seconds with no user feedback.

I was then able to successfully install cassandra via ruby’s gem package manager.

$ sudo gem install cassandra
Building native extensions.  This could take a while...
Successfully installed thrift-0.2.0
Successfully installed thrift_client-0.4.0
Successfully installed simple_uuid-0.1.0
Successfully installed cassandra-0.7.5
4 gems installed
Installing ri documentation for thrift-0.2.0...

Enclosing class/module 'thrift_module' for class BinaryProtocolAccelerated not known

Enclosing class/module 'thrift_module' for class BinaryProtocolAccelerated not known
Installing ri documentation for thrift_client-0.4.0...
Installing ri documentation for simple_uuid-0.1.0...
Installing ri documentation for cassandra-0.7.5...
Installing RDoc documentation for thrift-0.2.0...

Enclosing class/module 'thrift_module' for class BinaryProtocolAccelerated not known

Enclosing class/module 'thrift_module' for class BinaryProtocolAccelerated not known
Installing RDoc documentation for thrift_client-0.4.0...
Installing RDoc documentation for simple_uuid-0.1.0...
Installing RDoc documentation for cassandra-0.7.5...

My use of cassandra_helper provided the following expected dependency error.

$ cassandra_helper cassandra
Set the CASSANDRA_INCLUDE environment variable to use a non-default cassandra.in.sh and friends.
(in /Library/Ruby/Gems/1.8/gems/cassandra-0.7.5)
You need to install git 1.6 or 1.7

I found instructions to install git at Installing git (OSX) and installed via GUI installer.

I had to include to my current session path to get my Ruby Cassandra installation.

$ export PATH=/usr/local/git/bin:$PATH

$ cassandra_helper cassandra
Set the CASSANDRA_INCLUDE environment variable to use a non-default cassandra.in.sh and friends.
(in /Library/Ruby/Gems/1.8/gems/cassandra-0.7.5)
Checking Cassandra out from git
Initialized empty Git repository in /Users/rbradfor/cassandra/server/.git/
remote: Counting objects: 16715, done.
remote: Compressing objects: 100% (2707/2707), done.
remote: Total 16715 (delta 9946), reused 16011 (delta 9364)
Receiving objects: 100% (16715/16715), 19.22 MiB | 1.15 MiB/s, done.
Resolving deltas: 100% (9946/9946), done.
Updating Cassandra.
Buildfile: build.xml

clean:

BUILD SUCCESSFUL
Total time: 2 seconds
HEAD is now at 298a0e6 check-in debian packaging
Building Cassandra
Buildfile: build.xml

build-subprojects:

init:
    [mkdir] Created dir: /Users/rbradfor/cassandra/server/build/classes
    [mkdir] Created dir: /Users/rbradfor/cassandra/server/build/test/classes
    [mkdir] Created dir: /Users/rbradfor/cassandra/server/src/gen-java

check-gen-cli-grammar:

gen-cli-grammar:
     [echo] Building Grammar /Users/rbradfor/cassandra/server/src/java/org/apache/cassandra/cli/Cli.g  ....

build-project:
     [echo] apache-cassandra-incubating: /Users/rbradfor/cassandra/server/build.xml
    [javac] Compiling 247 source files to /Users/rbradfor/cassandra/server/build/classes
    [javac] Note: Some input files use or override a deprecated API.
    [javac] Note: Recompile with -Xlint:deprecation for details.
    [javac] Note: Some input files use unchecked or unsafe operations.
    [javac] Note: Recompile with -Xlint:unchecked for details.

build:

BUILD SUCCESSFUL
Total time: 42 seconds
CASSANDRA_HOME: /Users/rbradfor/cassandra/server
CASSANDRA_CONF: /Library/Ruby/Gems/1.8/gems/cassandra-0.7.5/conf
Listening for transport dt_socket at address: 8888
DEBUG - Loading settings from /Library/Ruby/Gems/1.8/gems/cassandra-0.7.5/conf/storage-conf.xml
....

I was then able to complete the example at up and running with cassandra running via the ruby interactive console.

I was also able to fire up the cassandra-cli and see the data added in ruby.

$ bin/cassandra-cli -host localhost
Connected to localhost/9160
cassandra> get Twitter.Statuses['1']
=> (column=user_id, value=5, timestamp=1267072406503471)
=> (column=text, value=Nom nom nom nom nom., timestamp=1267072406503471)
Returned 2 results.
cassandra> get Twitter.UserRelationships['5'];
=> (super_column=user_timeline,
     (column=???!??zvZ+?!, value=1, timestamp=1267072426991872)
     (column=??-?!???C?th?, value=2, timestamp=1267072427019091))
Returned 1 results.

No sure about the data in the second example.

Configuring a Cassandra Cluster

Continuing on from Getting started with Cassandra I’m now trying to configure two servers as a cluster. The Getting Started Step 3 was not clear the first time I read it (after writing this is makes sense), so a Google search yielded the second link as Building a Small Cassandra Cluster for Testing and Development. I love finding reference material from people I know, Padraig being a significant contributor to Drizzle.

Here is what I did to create a running Cassandra Cluster.

  • Stop individual Cassandra instances
  • Re-created data and log directories (I did this just to ensure a clean slate)
  • I added to my local hosts file two aliases for my servers (cass01 and cass02). This helped in the following step.
  • Three changes are needed to the default conf/storage-conf.xml file on my first server.
    • Change <ListenAddress> from localhost to cass01
    • Change <ThristAddress> from localhost to cass01
    • Change <Seed> from 127.0.0.1 to cass01
  • On my second server I changed the <ListenAddress> and <ThriftAddress> accordingly to cass02 and made <Seed> cass01
  • Started Cassandra servers and tested successfully using the set …/get Keyspace1.Standard1[‘jsmith’] example. I was able to connect to both hosts via cassandra-cli and see the results created on just one node. I was able to create data on the second node and view on the first node.

A new command is available to describe your cluster.

$ bin/nodeprobe -host cass01 ring
Address       Status     Load          Range                                      Ring
                                       148029780173059661585165369000220362256
192.168.100.4 Up         0 bytes       59303445267720348277007645348152900920     |<--|
192.168.100.5 Up         0 bytes       148029780173059661585165369000220362256    |-->|

Now with my first introduction successful, time to start using and seeing the true power of using Cassandra.

Getting started with Cassandra

With the motivation from today’s public news on Twitter’s move from MySQL to Cassandra, my own skills desire following in-depth discussions at last November’s Open SQL Camp to consider Cassandra and yesterday’s discussion with a new client on persistent key-value store products, today I download installed and configured for the first time. Not that today’s news was unexpected, if you follow the Twitter Engineering Open Source projects you would have seen Cassandra as well as other products being used or evaluated by Twitter.

So I went from nothing to a working Cassandra node in under 5 minutes. This is what I did.

  1. While I knew this was an Apache project, a Google Search yields for me the 3rd link for the The Apache Cassandra Project at http://incubator.apache.org/cassandra/. Congrats for Cassandra now a top level Apache Project. This url will update soon.
  2. Download Cassandra. Hard to miss with a big green button on home page. Current version is 0.5
  3. I read Getting Started, which is the 3rd top level link on menu after Home and Download. Step 1 is picking a version which I’ve already done, Step 2 is Running a single node.
  4. The Getting Started indicated a problem on Mac OS X for the required minimum Java version. I was installing on Mac OS X 10.5 and CentOS 5.4. I’ve experienced this Java 6 default path issue before. Set my JAVA_HOME and PATH accordingly (after I updated the wiki with correct value)
  5. I extracted the tar file, changed to the directory and took at look at the README.txt file. Yes, I always check this first with any software and relevant because it includes valuable instructions on creating the default data and log directories.
  6. Start with bin/cassandra -f. No problems!
  7. I then followed the instructions from the link in Step 2 with the CassandraCli. This tests and confirms the installation is operational.

Ok, a working environment. I’ve now installed on a second machine and tested however I now need to configure the cluster, and the documentation is not as straightforward. Time to try out Google again.

On a side note, this is one reason why I love Open Source. I followed the instructions online and found a mistake in the Mac OS X path, I simply registered and corrected providing the benefit of my experience for the next reader(s).

You may also like to view future posts including.